1
|
Mizutani A, Kobayashi M, Nishi K, Fujita KI, Takahashi K, Muranaka Y, Sato K, Kitamura M, Suzuki C, Nishii R, Shikano N, Magata Y, Ishida Y, Kunishima M, Fukuchi K, Kawai K. Development of radioiodine-labeled mequitazine for evaluation of hepatic CYP2D activity. Front Pharmacol 2024; 15:1397288. [PMID: 38962307 PMCID: PMC11219936 DOI: 10.3389/fphar.2024.1397288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
Background: As drug-metabolizing enzyme activities are affected by a variety of factors, such as drug-drug interactions, a method to evaluate drug-metabolizing enzyme activities in real time is needed. In this study, we developed a novel SPECT imaging probe for evaluation of hepatic CYP2D activity. Methods: Iodine-123- and 125-labeled 4-iodobenzylmequitazine (123/125I-BMQ) was synthesized with high labeling and purity. CYP isozymes involved in the metabolism of 125I-BMQ in mouse liver microsomes were evaluated, and the utility of 123/125I-was assessed from biological distribution and SPECT imaging evaluation in normal and CYP2D-inhibited mice. Results: In vitro metabolite analysis using mouse liver microsomes showed that 125I-BMQ is specifically metabolized by CYP2D. Biological distribution and SPECT imaging of 123/125I-BMQ in normal mice showed that injection 123/125I-BMQ accumulated early in the liver and was excreted into the gallbladder and intestines. In CYP2D-inhibited mice, accumulation in the liver was increased, but accumulation in the gallbladder and intestines, the excretory organ, was delayed. Since only metabolites of 125I-BMQ are detected in bile, visualization and measuring of the accumulation of metabolites over time in the intestine, where bile is excreted, could predict the amount of metabolites produced in the body and evaluate CYP2D activity, which would be useful in determining the dosage of various drugs metabolized by CYP2D. Conclusion: 123/125I-BMQ is useful as a SPECT imaging probe for comprehensive and direct assessment of hepatic CYP2D activity in a minimally invasive and simple approach.
Collapse
Affiliation(s)
- Asuka Mizutani
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masato Kobayashi
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kodai Nishi
- Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Ken-ichi Fujita
- Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan
| | - Kotaro Takahashi
- Department of Radiologic Technology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yuka Muranaka
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, Tokyo, Japan
| | - Kakeru Sato
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masanori Kitamura
- Faculty of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Chie Suzuki
- Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ryuichi Nishii
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Naoto Shikano
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Yasuhiro Magata
- Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasushi Ishida
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | | | - Kazuki Fukuchi
- Division of Medical Technology and Science, Department of Medical Physics and Engineering, Course of Health Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Keiichi Kawai
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| |
Collapse
|
2
|
Mizutani A, Kobayashi M, Aibe R, Muranaka Y, Nishi K, Kitamura M, Suzuki C, Nishii R, Shikano N, Magata Y, Ishida Y, Kunishima M, Kawai K. Measurement of Hepatic CYP3A4 and 2D6 Activity Using Radioiodine-Labeled O-Desmethylvenlafaxine. Int J Mol Sci 2022; 23:ijms231911458. [PMID: 36232758 PMCID: PMC9569593 DOI: 10.3390/ijms231911458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Drug metabolizing enzyme activity is affected by various factors such as drug–drug interactions, and a method to quantify drug metabolizing enzyme activity in real time is needed. In this study, we developed a novel radiopharmaceutical for quantitative imaging to estimate hepatic CYP3A4 and CYP2D6 activity. Iodine-123- and 125-labeled O-desmethylvenlafaxine (123/125I-ODV) was obtained with high labeling and purity, and its metabolism was found to strongly involve CYP3A4 and CYP2D6. SPECT imaging in normal mice showed that the administered 123I-ODV accumulated early in the liver and was excreted into the gallbladder, as evaluated by time activity curves. In its biological distribution, 125I-ODV administered to mice accumulated early in the liver, and only the metabolite of 125I-ODV was quickly excreted into the bile. In CYP3A4- and CYP2D6-inhibited model mice, the accumulation in bile decreased more than in normal mice, indicating inhibition of metabolite production. These results indicated that imaging and quantifying the accumulation of radioactive metabolites in excretory organs will aid in determining the dosages of various drugs metabolized by CYP3A4 and CYP2D6 for individualized medicine. Thus, 123/125I-ODV has the potential to direct, comprehensive detection and measurement of hepatic CYP3A4 and CYP2D6 activity by a simple and less invasive approach.
Collapse
Affiliation(s)
- Asuka Mizutani
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Ishikawa, Japan
| | - Masato Kobayashi
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Ishikawa, Japan
| | - Riku Aibe
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Ishikawa, Japan
| | - Yuka Muranaka
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Ishikawa, Japan
| | - Kodai Nishi
- Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Nagasaki, Japan
| | - Masanori Kitamura
- Faculty of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan
| | - Chie Suzuki
- Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi, Hamamatsu 431-3192, Shizuoka, Japan
| | - Ryuichi Nishii
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Chiba, Japan
| | - Naoto Shikano
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Inashiki 300-0394, Ibaraki, Japan
| | - Yasuhiro Magata
- Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi, Hamamatsu 431-3192, Shizuoka, Japan
| | - Yasushi Ishida
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Miyazaki, Japan
| | - Munetaka Kunishima
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma, Kanazawa 920-1192, Ishikawa, Japan
| | - Keiichi Kawai
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Ishikawa, Japan
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji 910-1193, Fukui, Japan
- Correspondence: ; Tel.: +81-76-265-2527; Fax: +81-76-234-4366
| |
Collapse
|
3
|
Yang C, Wang Q, Ding W. Recent progress in the imaging detection of enzyme activities in vivo. RSC Adv 2019; 9:25285-25302. [PMID: 35530057 PMCID: PMC9070033 DOI: 10.1039/c9ra04508b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022] Open
Abstract
Enzymatic activities are important for normal physiological processes and are also critical regulatory mechanisms for many pathologies. Identifying the enzyme activities in vivo has considerable importance in disease diagnoses and monitoring of the physiological metabolism. In the past few years, great strides have been made towards the imaging detection of enzyme activity in vivo based on optical modality, MRI modality, nuclear modality, photoacoustic modality and multifunctional modality. This review summarizes the latest advances in the imaging detection of enzyme activities in vivo reported within the past years, mainly concentrating on the probe design, imaging strategies and demonstration of enzyme activities in vivo. This review also highlights the potential challenges and the further directions of this field.
Collapse
Affiliation(s)
- Chunjie Yang
- College of Health Science, Yuncheng Polytechnic College Yuncheng Shanxi 044000 PR China
- College of Food Science and Engineering, Northwest A&F University Yangling Shaanxi 712100 PR China
| | - Qian Wang
- College of Food Science and Engineering, Northwest A&F University Yangling Shaanxi 712100 PR China
| | - Wu Ding
- College of Food Science and Engineering, Northwest A&F University Yangling Shaanxi 712100 PR China
| |
Collapse
|