1
|
Xie L, Zhao J, Li Y, Bai J. PET brain imaging in neurological disorders. Phys Life Rev 2024; 49:100-111. [PMID: 38574584 DOI: 10.1016/j.plrev.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
Brain disorders are a series of conditions with damage or loss of neurons, such as Parkinson's disease (PD), Alzheimer's disease (AD), or drug dependence. These individuals have gradual deterioration of cognitive, motor, and other central nervous system functions affected. This degenerative trajectory is intricately associated with dysregulations in neurotransmitter systems. Positron Emission Tomography (PET) imaging, employing radiopharmaceuticals and molecular imaging techniques, emerges as a crucial tool for detecting brain biomarkers. It offers invaluable insights for early diagnosis and distinguishing brain disorders. This article comprehensively reviews the application and progress of conventional and novel PET imaging agents in diagnosing brain disorders. Furthermore, it conducts a thorough analysis on merits and limitations. The article also provides a forward-looking perspective in the future development directions of PET imaging agents for diagnosing brain disorders and proposes potential innovative strategies. It aims to furnish clinicians and researchers with an all-encompassing overview of the latest advancements and forthcoming trends in the utilization of PET imaging for diagnosing brain disorders.
Collapse
Affiliation(s)
- Lijun Xie
- Faculty of Life science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Laboratory of Molecular Neurobiology, Medical school, Kunming University of Science and Technology, Kunming 650500, PR China; Department of Nuclear Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, PR China
| | - Jihua Zhao
- Department of Nuclear Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, PR China
| | - Ye Li
- Laboratory of Molecular Neurobiology, Medical school, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical school, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
2
|
Huszár Z, Engh MA, Pavlekovics M, Sato T, Steenkamp Y, Hanseeuw B, Terebessy T, Molnár Z, Hegyi P, Csukly G. Risk of conversion to mild cognitive impairment or dementia among subjects with amyloid and tau pathology: a systematic review and meta-analysis. Alzheimers Res Ther 2024; 16:81. [PMID: 38610055 PMCID: PMC11015617 DOI: 10.1186/s13195-024-01455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Measurement of beta-amyloid (Aβ) and phosphorylated tau (p-tau) levels offers the potential for early detection of neurocognitive impairment. Still, the probability of developing a clinical syndrome in the presence of these protein changes (A+ and T+) remains unclear. By performing a systematic review and meta-analysis, we investigated the risk of mild cognitive impairment (MCI) or dementia in the non-demented population with A+ and A- alone and in combination with T+ and T- as confirmed by PET or cerebrospinal fluid examination. METHODS A systematic search of prospective and retrospective studies investigating the association of Aβ and p-tau with cognitive decline was performed in three databases (MEDLINE via PubMed, EMBASE, and CENTRAL) on January 9, 2024. The risk of bias was assessed using the Cochrane QUIPS tool. Odds ratios (OR) and Hazard Ratios (HR) were pooled using a random-effects model. The effect of neurodegeneration was not studied due to its non-specific nature. RESULTS A total of 18,162 records were found, and at the end of the selection process, data from 36 cohorts were pooled (n= 7,793). Compared to the unexposed group, the odds ratio (OR) for conversion to dementia in A+ MCI patients was 5.18 [95% CI 3.93; 6.81]. In A+ CU subjects, the OR for conversion to MCI or dementia was 5.79 [95% CI 2.88; 11.64]. Cerebrospinal fluid Aβ42 or Aβ42/40 analysis and amyloid PET imaging showed consistent results. The OR for conversion in A+T+ MCI subjects (11.60 [95% CI 7.96; 16.91]) was significantly higher than in A+T- subjects (2.73 [95% CI 1.65; 4.52]). The OR for A-T+ MCI subjects was non-significant (1.47 [95% CI 0.55; 3.92]). CU subjects with A+T+ status had a significantly higher OR for conversion (13.46 [95% CI 3.69; 49.11]) than A+T- subjects (2.04 [95% CI 0.70; 5.97]). Meta-regression showed that the ORs for Aβ exposure decreased with age in MCI. (beta = -0.04 [95% CI -0.03 to -0.083]). CONCLUSIONS Identifying Aβ-positive individuals, irrespective of the measurement technique employed (CSF or PET), enables the detection of the most at-risk population before disease onset, or at least at a mild stage. The inclusion of tau status in addition to Aβ, especially in A+T+ cases, further refines the risk assessment. Notably, the higher odds ratio associated with Aβ decreases with age. TRIAL REGISTRATION The study was registered in PROSPERO (ID: CRD42021288100).
Collapse
Affiliation(s)
- Zsolt Huszár
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, Budapest, 1083, Hungary
| | - Marie Anne Engh
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Márk Pavlekovics
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Department of Neurology, Jahn Ferenc Teaching Hospital, Köves utca 1, Budapest, 1204, Hungary
| | - Tomoya Sato
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Yalea Steenkamp
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Bernard Hanseeuw
- Department of Neurology and Institute of Neuroscience, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, 1200, Belgium
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02155, USA
| | - Tamás Terebessy
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Zsolt Molnár
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Üllői út 78/A, Budapest, Hungary
- Department of Anesthesiology and Intensive Therapy, Poznan University of Medical Sciences, 49 Przybyszewskiego St, Poznan, Poland
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, 7624, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Tömő 25-29, Budapest, 1083, Hungary
- Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation University of Szeged, Budapesti 9, Szeged, 6728, Hungary
| | - Gábor Csukly
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, Budapest, 1083, Hungary.
| |
Collapse
|
3
|
Zhao Q, Du X, Chen W, Zhang T, Xu Z. Advances in diagnosing mild cognitive impairment and Alzheimer's disease using 11C-PIB- PET/CT and common neuropsychological tests. Front Neurosci 2023; 17:1216215. [PMID: 37492405 PMCID: PMC10363609 DOI: 10.3389/fnins.2023.1216215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/15/2023] [Indexed: 07/27/2023] Open
Abstract
Alzheimer's disease (AD) is a critical health issue worldwide that has a negative impact on patients' quality of life, as well as on caregivers, society, and the environment. Positron emission tomography (PET)/computed tomography (CT) and neuropsychological scales can be used to identify AD and mild cognitive impairment (MCI) early, provide a differential diagnosis, and offer early therapies to impede the course of the illness. However, there are few reports of large-scale 11C-PIB-PET/CT investigations that focus on the pathology of AD and MCI. Therefore, further research is needed to determine how neuropsychological test scales and PET/CT measurements of disease progression interact.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xinxin Du
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Wenhong Chen
- Department of Sleep Medicine, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, Guangxi, China
| | - Ting Zhang
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Rehabilitation Therapeutics, School of Nursing of Jilin University, Changchun, Jilin, China
| | - Zhuo Xu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Hernes SS, Flak MM, Løhaugen GCC, Skranes J, Hol HR, Madsen BO, Knapskog AB, Engvig A, Pripp A, Ulstein I, Lona T, Zhang X, Chang L. Working Memory Training in Amnestic and Non-amnestic Patients With Mild Cognitive Impairment: Preliminary Findings From Genotype Variants on Training Effects. Front Aging Neurosci 2021; 13:624253. [PMID: 33658917 PMCID: PMC7917210 DOI: 10.3389/fnagi.2021.624253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
Working memory training (WMT) effects may be modulated by mild cognitive impairment (MCI) subtypes, and variations in APOE-epsilon (APOE-ε) and LMX1A genotypes. Sixty-one individuals (41 men/20 women, mean age 66 years) diagnosed with MCI (31 amnestic/30 non-amnestic) and genotyped for APOE-ε and LMX1A completed 4 weeks/20-25 sessions of WMT. Cognitive functions were assessed before, 4 weeks and 16 weeks after WMT. Except for Processing Speed, the non-amnestic MCI group (naMCI) outperformed the amnestic MCI (aMCI) group in all cognitive domains across all time-points. At 4 weeks, working memory function improved in both groups (p < 0.0001), but at 16 weeks the effects only remained in the naMCI group. Better performance was found after training for the naMCI patients with LMX1A-AA genotype and for the APOE-ε4 carriers. Only the naMCI-APOE-ε4 group showed improved Executive Function at 16 weeks. WMT improved working memory and some non-trained cognitive functions in individuals with MCI. The naMCI group had greater training gain than aMCI group, especially in those with LMX1A-AA genotype and among APOE-ε4-carriers. Further research with larger sample sizes for the subgroups and longer follow-up evaluations is warranted.
Collapse
Affiliation(s)
- Susanne S Hernes
- Department of Geriatric and Internal Medicine, Sørlandet Hospital, Arendal, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Marianne M Flak
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pediatrics, Sørlandet Hospital HF, Arendal, Norway
| | - Gro C C Løhaugen
- Department of Pediatrics, Sørlandet Hospital HF, Arendal, Norway
| | - Jon Skranes
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pediatrics, Sørlandet Hospital HF, Arendal, Norway
| | - Haakon R Hol
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Radiology, Sørlandet Hospital HF, Arendal, Norway
| | - Bengt-Ove Madsen
- Department of Geriatric and Internal Medicine, Sørlandet Hospital, Arendal, Norway
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, The Memory Clinic, Oslo University Hospital, Oslo, Norway
| | - Andreas Engvig
- Department of Medicine, Diakonhjemmet Hospital, Oslo, Norway
| | - Are Pripp
- Oslo Centre of Biostatistics and Epidemiology Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Ingun Ulstein
- Department of Geriatric Medicine, The Memory Clinic, Oslo University Hospital, Oslo, Norway
| | - Trine Lona
- Department of Psychiatry, Age Psychiatry, The Hospital of Telemark, Skien, Norway
| | - Xin Zhang
- Department of Diagnostic Radiology and Nuclear Medicine, and Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, and Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Medicine, John A. Burns School of Medicine, The University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|