1
|
Wakasugi N, Takano H, Abe M, Sawamoto N, Murai T, Mizuno T, Matsuoka T, Yamakuni R, Yabe H, Matsuda H, Hanakawa T. Harmonizing multisite data with the ComBat method for enhanced Parkinson's disease diagnosis via DAT-SPECT. Front Neurol 2024; 15:1306546. [PMID: 38440115 PMCID: PMC10911132 DOI: 10.3389/fneur.2024.1306546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024] Open
Abstract
Background Dopamine transporter single-photon emission computed tomography (DAT-SPECT) is a crucial tool for evaluating patients with Parkinson's disease (PD). However, its implication is limited by inter-site variability in large multisite clinical trials. To overcome the limitation, a conventional prospective correction method employs linear regression with phantom scanning, which is effective yet available only in a prospective manner. An alternative, although relatively underexplored, involves retrospective modeling using a statistical method known as "combatting batch effects when combining batches of gene expression microarray data" (ComBat). Methods We analyzed DAT-SPECT-specific binding ratios (SBRs) derived from 72 healthy older adults and 81 patients with PD registered in four clinical sites. We applied both the prospective correction and the retrospective ComBat correction to the original SBRs. Next, we compared the performance of the original and two corrected SBRs to differentiate the PD patients from the healthy controls. Diagnostic accuracy was assessed using the area under the receiver operating characteristic curve (AUC-ROC). Results The original SBRs were 6.13 ± 1.54 (mean ± standard deviation) and 2.03 ± 1.41 in the control and PD groups, respectively. After the prospective correction, the mean SBRs were 6.52 ± 1.06 and 2.40 ± 0.99 in the control and PD groups, respectively. After the retrospective ComBat correction, the SBRs were 5.25 ± 0.89 and 2.01 ± 0.73 in the control and PD groups, respectively, resulting in substantial changes in mean values with fewer variances. The original SBRs demonstrated fair performance in differentiating PD from controls (Hedges's g = 2.76; AUC-ROC = 0.936). Both correction methods improved discrimination performance. The ComBat-corrected SBR demonstrated comparable performance (g = 3.99 and AUC-ROC = 0.987) to the prospectively corrected SBR (g = 4.32 and AUC-ROC = 0.992) for discrimination. Conclusion Although we confirmed that SBRs fairly discriminated PD from healthy older adults without any correction, the correction methods improved their discrimination performance in a multisite setting. Our results support the utility of harmonization methods with ComBat for consolidating SBR-based diagnosis or stratification of PD in multisite studies. Nonetheless, given the substantial changes in the mean values of ComBat-corrected SBRs, caution is advised when interpreting them.
Collapse
Affiliation(s)
- Noritaka Wakasugi
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Harumasa Takano
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mitsunari Abe
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Teruyuki Matsuoka
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Psychiatry, NHO Maizuru Medical Center, Kyoto, Japan
| | - Ryo Yamakuni
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Matsuda
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima, Japan
| | - Takashi Hanakawa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
2
|
Honkanen EA, Noponen T, Hirvilammi R, Lindholm K, Parkkola R, Joutsa J, Varrone A, Kaasinen V. Sex correction improves the accuracy of clinical dopamine transporter imaging. EJNMMI Res 2021; 11:82. [PMID: 34424408 PMCID: PMC8382816 DOI: 10.1186/s13550-021-00825-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background In clinical diagnostic imaging, dopamine transporter (DAT) SPECT scans are commonly evaluated using automated semiquantitative analysis software. Age correction is routinely implemented, but usually no sex correction of DAT binding is performed. Since there are sex differences in presynaptic dopaminergic function, we investigated the effect of DAT sex correction in a sample of healthy volunteers who underwent brain [123I]-FP-CIT SPECT. Methods Forty healthy elderly individuals (21 men and 19 women) underwent brain [123I]-FP-CIT SPECT, and each subject was examined clinically for motor and non-motor parkinsonian symptoms and signs. Regional specific DAT binding ratios (SBR = [ROI-occ]/occ) were calculated using age correction, and the results were compared to those in normal databases with and without sex correction. The level of regional abnormality was set at 2 standard deviations below the mean values of the reference databases. Results In the analysis without sex correction, compared to the mean ratio of the reference database, ten healthy individuals (8 men and 2 women) had abnormally low DAT binding ratios, and four individuals (3 men and 1 woman) had borderline low DAT binding ratios in at least one striatal region. When sex correction was implemented, the ratio of one individual was abnormal, and the ratio of one individual was borderline (both males). There were no clinically significant differences in motor or non-motor symptoms between healthy volunteers with abnormal and normal binding. Conclusions A considerable number of elderly healthy male subjects can be interpreted to be dopaminergically abnormal if no sex correction of DAT binding is performed. Sex differences in striatal dopaminergic function should be taken into account when DAT imaging is used to assist clinical diagnostics in patients with suspected neurological disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00825-3.
Collapse
Affiliation(s)
- Emma A Honkanen
- Clinical Neurosciences, University of Turku, Turku, Finland. .,Neurocenter, Turku University Hospital, Turku, Finland. .,Department of Neurology, Satasairaala Central Hospital, Pori, Finland. .,Turku PET Centre , Turku University Hospital, Turku, Finland.
| | - Tommi Noponen
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland.,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Risto Hirvilammi
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland.,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Kari Lindholm
- Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Juho Joutsa
- Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland.,Turku PET Centre , Turku University Hospital, Turku, Finland.,Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
3
|
Schmitz-Steinkrüger H, Lange C, Apostolova I, Mathies FL, Frings L, Klutmann S, Hellwig S, Meyer PT, Buchert R. Impact of age and sex correction on the diagnostic performance of dopamine transporter SPECT. Eur J Nucl Med Mol Imaging 2020; 48:1445-1459. [PMID: 33130960 PMCID: PMC8113204 DOI: 10.1007/s00259-020-05085-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
Purpose The specific binding ratio (SBR) of 123I-FP-CIT (FP-CIT) in the putamen decreases with age by about 5% per decade and most likely is about 10% higher in females. However, the clinical utility of age and sex correction of the SBR is still a matter of debate. This study tested the impact of age and sex correction on the diagnostic performance of the putamen SBR in three independent patient samples. Methods Research sample: 207 healthy controls (HC) and 438 Parkinson’s disease (PD) patients. Clinical sample A: 183 patients with neurodegenerative parkinsonian syndrome (PS) and 183 patients with non-neurodegenerative PS from one site. Clinical sample B: 84 patients with neurodegenerative PS and 38 patients with non-neurodegenerative PS from another site. Correction for age and sex of the putamen SBR was based on linear regression in the HC or non-neurodegenerative PS, separately in each sample. The area under the ROC curve (AUC) was used as performance measure. Results The putamen SBR was higher in females compared to males (PPMI: 14%, p < 0.0005; clinical sample A: 7%, p < 0.0005; clinical sample B: 6%, p = 0.361). Age-related decline of the putamen SBR ranged between 3.3 and 10.4% (p ≤ 0.019). In subjects ≥ 50 years, age and sex explained < 10% of SBR between-subjects variance. Correction of the putamen SBR for age and sex resulted in slightly decreased AUC in the PPMI sample (0.9955 versus 0.9969, p = 0.025) and in clinical sample A (0.9448 versus 0.9519, p = 0.057). There was a small, non-significant AUC increase in clinical sample B (0.9828 versus 0.9743, p = 0.232). Conclusion These findings do not support age and sex correction of the putaminal FP-CIT SBR in the diagnostic workup of parkinsonian syndromes. This most likely is explained by the fact that the proportion of between-subjects variance caused by age and sex is considerably below the symptom threshold of about 50% reduction in neurodegenerative PS. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-020-05085-2.
Collapse
Affiliation(s)
- Helen Schmitz-Steinkrüger
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Catharina Lange
- Department of Nuclear Medicine, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivayla Apostolova
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Franziska L Mathies
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Lars Frings
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Klutmann
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sabine Hellwig
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralph Buchert
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|