1
|
Dwivedi P, Barage S, Jha AK, Choudhury S, Rangarajan V. Robustness of 18F-FDG PET Radiomic Features in Lung Cancer: Impact of Advanced Reconstruction Algorithm. J Nucl Med Technol 2025:jnmt.124.268252. [PMID: 39909582 DOI: 10.2967/jnmt.124.268252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/02/2024] [Indexed: 02/07/2025] Open
Abstract
18F-FDG PET radiomics is emerging as a promising tool to identify imaging biomarkers for quantifying intratumor heterogeneity in lung cancer. However, the robustness of PET radiomic features (RFs) is influenced by factors such as image reconstruction algorithms, tumor segmentation, and discretization. Although the impact of these factors on RFs has been explored, the specific influence of the advanced block sequential regularized expectation maximization (BSREM) reconstruction algorithm remains unclear. This study investigated the potential variations in PET RFs associated with different factors when using BSREM. Methods: Retrospective data of 18F-FDG PET from 120 lung cancer patients were reconstructed twice using advanced BSREM and conventional ordered-subset expectation maximization methods. For each reconstruction set, 3 tumor segmentations were performed, including manual, 40% threshold, and Nestle methods. Two discretization methods using absolute and relative settings were applied for each dataset before RF extraction. Stable and robust RFs were assessed by the coefficient of variance and intraclass correlation coefficient, respectively. Results: High instability was exhibited by 19%, 33%, and 36% of RFs, with a coefficient of variation of more than 20% for reconstruction, segmentation, and discretization, respectively. Conversely, 60%, 19%, and 35% of RFs demonstrated robustness against these factors, with an intraclass correlation coefficient of more than 0.90. The comparative evaluation revealed significantly greater robustness for most RF subtypes in BSREM than in ordered-subset expectation maximization under varying segmentation and discretization conditions (P < 0.05). Conclusion: The stability and robustness of PET RFs are enhanced if BSREM is applied rather than the conventional method. Study results suggest that the advanced reconstruction method could offer potential benefits in providing consistent PET-based radiomic analysis for improving diagnostic and prognostic value.
Collapse
Affiliation(s)
- Pooja Dwivedi
- Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Amity Institute of Biotechnology, Amity University, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India; and
| | - Sagar Barage
- Amity Institute of Biotechnology, Amity University, Mumbai, India
| | - Ashish Kumar Jha
- Homi Bhabha National Institute, Mumbai, India; and
- Tata Memorial Hospital, Mumbai, India
| | - Sayak Choudhury
- Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India; and
| | - Venkatesh Rangarajan
- Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India;
- Homi Bhabha National Institute, Mumbai, India; and
- Tata Memorial Hospital, Mumbai, India
| |
Collapse
|
2
|
Dwivedi P, Kumar Jha A, Mithun S, Sawant V, Vajarkar V, Chauhan M, Choudhury S, Rangarajan V. Dose estimation in patients from different protocols of 18F-FDG PET/CT studies and analysis of optimization strategies. RADIATION PROTECTION DOSIMETRY 2024; 200:1384-1390. [PMID: 39213637 DOI: 10.1093/rpd/ncae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to evaluate the dose in different protocols of 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (PET/CT) procedure. The retrospective study involves 207 patients with confirmed malignancies who underwent PET/CT. Effective dose (E) from PET was estimated based on injected activity and dose coefficient as per International Commission on Radiation Protection (ICRP) 128. Estimation of E from CT was done utilizing the dose length product (DLP) method and conversion factors as per ICRP 102. There was a significant statistical difference observed in E between different PET/CT protocols (P < .001). E of PET in the whole body (WB) was found to be 4.9 ± 0.9 mSv, whereas mean volume computed tomography dose indexvol, DLP, and E of CT in WB were 7.0 ± 0.2 mGy, 674.3 ± 80.7 mGy.cm, and 10.1 ± 1.2 mSv, respectively. No linear correlation was seen between the size-specific dose estimate and E of CT (r = -0.003; P = .978). The total mean E in WB PET/CT was 17.0 ± 1.7 mSv. CT dose was contributing more than PET dose in all protocols except brain PET/CT. Optimization strategies can be evaluated only if monitored periodically.
Collapse
Affiliation(s)
- Pooja Dwivedi
- Department of Nuclear Medicine and Molecular Imaging, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Ashish Kumar Jha
- Homi Bhabha National Institute, Mumbai 400094, India
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Tata Memorial Centre, Dr Ernest Borges Rd, Parel, Mumbai, Maharashtra 400012, India
| | - Sneha Mithun
- Homi Bhabha National Institute, Mumbai 400094, India
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Tata Memorial Centre, Dr Ernest Borges Rd, Parel, Mumbai, Maharashtra 400012, India
| | - Viraj Sawant
- Department of Nuclear Medicine and Molecular Imaging, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Vishal Vajarkar
- Department of Nuclear Medicine and Molecular Imaging, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Manoj Chauhan
- Department of Nuclear Medicine and Molecular Imaging, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Sayak Choudhury
- Department of Nuclear Medicine and Molecular Imaging, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine and Molecular Imaging, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India
- Homi Bhabha National Institute, Mumbai 400094, India
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Tata Memorial Centre, Dr Ernest Borges Rd, Parel, Mumbai, Maharashtra 400012, India
| |
Collapse
|
3
|
Cox CPW, Brabander T, Vegt E, de Lussanet de la Sablonière QG, Graven LH, Verburg FA, Segbers M. Reduction of [ 68Ga]Ga-DOTA-TATE injected activity for digital PET/MR in comparison with analogue PET/CT. EJNMMI Phys 2024; 11:27. [PMID: 38488989 PMCID: PMC11266332 DOI: 10.1186/s40658-024-00629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND New digital detectors and block-sequential regularized expectation maximization (BSREM) reconstruction algorithm improve positron emission tomography (PET)/magnetic resonance (MR) image quality. The impact on image quality may differ from analogue PET/computed tomography (CT) protocol. The aim of this study is to determine the potential reduction of injected [68Ga]Ga-DOTA-TATE activity for digital PET/MR with BSREM reconstruction while maintaining at least equal image quality compared to the current analogue PET/CT protocol. METHODS NEMA IQ phantom data and 25 patients scheduled for a diagnostic PET/MR were included. According to our current protocol, 1.5 MBq [68Ga]Ga-DOTA-TATE per kilogram (kg) was injected. After 60 min, scans were acquired with 3 (≤ 70 kg) or 4 (> 70 kg) minutes per bedposition. PET/MR scans were reconstructed using BSREM and factors β 150, 300, 450 and 600. List mode data with reduced counts were reconstructed to simulate scans with 17%, 33%, 50% and 67% activity reduction. Image quality was measured quantitatively for PET/CT and PET/MR phantom and patient data. Experienced nuclear medicine physicians performed visual image quality scoring and lesion counting in the PET/MR patient data. RESULTS Phantom analysis resulted in a possible injected activity reduction of 50% with factor β = 600. Quantitative analysis of patient images revealed a possible injected activity reduction of 67% with factor β = 600. Both with equal or improved image quality as compared to PET/CT. However, based on visual scoring a maximum activity reduction of 33% with factor β = 450 was acceptable, which was further limited by lesion detectability analysis to an injected activity reduction of 17% with factor β = 450. CONCLUSION A digital [68Ga]Ga-DOTA-TATE PET/MR together with BSREM using factor β = 450 result in 17% injected activity reduction with quantitative values at least similar to analogue PET/CT, without compromising on PET/MR visual image quality and lesion detectability.
Collapse
Affiliation(s)
- Christina P W Cox
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Tessa Brabander
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Erik Vegt
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Quido G de Lussanet de la Sablonière
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Laura H Graven
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Frederik A Verburg
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Marcel Segbers
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|