1
|
Fiorucci S, Urbani G, Di Giorgio C, Biagioli M, Distrutti E. Bile Acids-Based Therapies for Primary Sclerosing Cholangitis: Current Landscape and Future Developments. Cells 2024; 13:1650. [PMID: 39404413 PMCID: PMC11475195 DOI: 10.3390/cells13191650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Primary sclerosing cholangitis (PSC) is a rare, chronic liver disease with no approved therapies. The ursodeoxycholic acid (UDCA) has been widely used, although there is no evidence that the use of UDCA delays the time to liver transplant or increases survival. Several candidate drugs are currently being developed. The largest group of these new agents is represented by FXR agonists, including obeticholic acid, cilofexor, and tropifexor. Other agents that target bile acid metabolism are ASTB/IBAP inhibitors and fibroblasts growth factor (FGF)19 analogues. Cholangiocytes, the epithelial bile duct cells, play a role in PSC development. Recent studies have revealed that these cells undergo a downregulation of GPBAR1 (TGR5), a bile acid receptor involved in bicarbonate secretion and immune regulation. Additional agents under evaluation are PPARs (elafibranor and seladelpar), anti-itching agents such as MAS-related G-protein-coupled receptors antagonists, and anti-fibrotic and immunosuppressive agents. Drugs targeting gut bacteria and bile acid pathways are also under investigation, given the strong link between PSC and gut microbiota.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Cristina Di Giorgio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy;
| |
Collapse
|
2
|
Budi NYP, Lai WY, Huang YH, Ho HN. 3D organoid cultivation improves the maturation and functional differentiation of cholangiocytes from human pluripotent stem cells. Front Cell Dev Biol 2024; 12:1361084. [PMID: 39040044 PMCID: PMC11260683 DOI: 10.3389/fcell.2024.1361084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/29/2024] [Indexed: 07/24/2024] Open
Abstract
Idiopathic cholangiopathies are diseases that affect cholangiocytes, and they have unknown etiologies. Currently, orthotopic liver transplantation is the only treatment available for end-stage liver disease. Limited access to the bile duct makes it difficult to model cholangiocyte diseases. In this study, by mimicking the embryonic development of cholangiocytes and using a robust, feeder- and serum-free protocol, we first demonstrate the generation of unique functional 3D organoids consisting of small and large cholangiocytes derived from human pluripotent stem cells (PSCs), as opposed to traditional 2D culture systems. At day 28 of differentiation, the human PSC-derived cholangiocytes expressed markers of mature cholangiocytes, such as CK7, CK19, and cystic fibrosis transmembrane conductance regulator (CFTR). Compared with the 2D culture system-generated cholangiocytes, the 3D cholangiocyte organoids (COs) showed higher expression of the region-specific markers of intrahepatic cholangiocytes YAP1 and JAG1 and extrahepatic cholangiocytes AQP1 and MUC1. Furthermore, the COs had small-large tube-like structures and functional assays revealed that they exhibited characteristics of mature cholangiocytes, such as multidrug resistance protein 1 transporter function and CFTR channel activity. In addition to the extracellular matrix supports, the epidermal growth factor receptor (EGFR)-mediated signaling regulation might be involved in this cholangiocyte maturation and differentiation. These results indicated the successful generation of intrahepatic and extrahepatic cholangiocytes by using our 3D organoid protocol. The results highlight the advantages of our 3D culture system over the 2D culture system in promoting the functional differentiation and maturation of cholangiocytes. In summary, in advance of the previous works, our study provides a possible concept of small-large cholangiocyte transdifferentiation of human PSCs under cost-effective 3D culture conditions. The study findings have implications for the development of effective cell-based therapy using COs for patients with cholangiopathies.
Collapse
Affiliation(s)
- Nova Yuli Prasetyo Budi
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Wei-Yu Lai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hua Huang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hong-Nerng Ho
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Municipal Wanfang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Hebbandi Nanjundappa R, Shao K, Krishnamurthy P, Gershwin ME, Leung PSC, Sokke Umeshappa C. Invariant natural killer T cells in autoimmune cholangiopathies: Mechanistic insights and therapeutic implications. Autoimmun Rev 2024; 23:103485. [PMID: 38040101 DOI: 10.1016/j.autrev.2023.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Invariant natural killer T cells (iNKT cells) constitute a specialized subset of lymphocytes that bridges innate and adaptive immunity through a combination of traits characteristic of both conventional T cells and innate immune cells. iNKT cells are characterized by their invariant T cell receptors and discerning recognition of lipid antigens, which are presented by the non-classical MHC molecule, CD1d. Within the hepatic milieu, iNKT cells hold heightened prominence, contributing significantly to the orchestration of organ homeostasis. Their unique positioning to interact with diverse cellular entities, ranging from epithelial constituents like hepatocytes and cholangiocytes to immunocytes including Kupffer cells, B cells, T cells, and dendritic cells, imparts them with potent immunoregulatory abilities. Emergering knowledge of liver iNKT cells subsets enable to explore their therapeutic potential in autoimmne liver diseases. This comprehensive review navigates the landscape of iNKT cell investigations in immune-mediated cholangiopathies, with a particular focus on primary biliary cholangitis and primary sclerosing cholangitis, across murine models and human subjects to unravel the intricate involvements of iNKT cells in liver autoimmunity. Additionally, we also highlight the prospectives of iNKT cells as therapeutic targets in cholangiopathies. Modulation of the equilibrium between regulatory and proinflammatory iNKT subsets can be defining determinant in the dynamics of hepatic autoimmunity. This discernment not only enriches our foundational comprehension but also lays the groundwork for pioneering strategies to navigate the multifaceted landscape of liver autoimmunity.
Collapse
Affiliation(s)
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States.
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Channakeshava Sokke Umeshappa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pediatrics, IWK Research Center, Halifax, NS, Canada.
| |
Collapse
|
4
|
Sohal A, Kowdley KV. Primary Biliary Cholangitis: Promising Emerging Innovative Therapies and Their Impact on GLOBE Scores. Hepat Med 2023; 15:63-77. [PMID: 37312929 PMCID: PMC10259525 DOI: 10.2147/hmer.s361077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
Primary biliary cholangitis (PBC), previously referred to as primary biliary cirrhosis, is an autoimmune disorder leading to the destruction of intra-hepatic bile ducts. If untreated, progressive bile duct damage and cholestasis can lead to ductopenia and result in cirrhosis. Ursodiol, the first drug approved for PBC, has changed the natural history of this disease and improved patient outcomes. Subsequently, several new prediction models incorporating a response to ursodiol were developed. These include the GLOBE score, which was shown to predict long-term outcomes in patients with PBC. In 2016, obeticholic acid (OCA) became the second drug to be approved by the FDA, predominantly based on improvement in alkaline phosphatase (ALP) levels. This trial has subsequently influenced the design of clinical trials. Several drugs are currently being evaluated as therapeutic options for PBC, with improvement in ALP being a main endpoint. In this review, we will discuss the impact of new therapies on GLOBE scores in patients with PBC.
Collapse
Affiliation(s)
- Aalam Sohal
- Department of Hepatology, Liver Institute Northwest, Seattle, WA, USA
| | - Kris V Kowdley
- Department of Hepatology, Liver Institute Northwest, Seattle, WA, USA
- Department of Gastroenterology and Hepatology, Elson Floyd College of Medicine, Spokane, WA, USA
| |
Collapse
|
5
|
Erlinger S. A history of research into the physiology of bile, from Hippocrates to molecular medicine. Clin Liver Dis (Hoboken) 2022; 20:33-44. [PMID: 36518787 PMCID: PMC9742757 DOI: 10.1002/cld.1266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
Content available: Audio Recording.
Collapse
|
6
|
Stel'makh VV, Kovalenko AL, Popova VB, Uspenskiy YP, Morozov VG, Belikova TN, Rafalskiy VV, Antonova EA. The results of phase III multicenter open randomized controlled study REM-Chol-III-16 in patients with intrahepatic cholestasis syndrome caused by chronic diffuse liver diseases. TERAPEVT ARKH 2022; 93:1470-1476. [DOI: 10.26442/00403660.2021.12.201266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 11/22/2022]
Abstract
Aim. To assess the safety and efficacy of Remaxol, solution for infusion, compared with parenteral form of S-adenosyl-L-methionine, in the treatment of patients with intrahepatic cholestasis syndrome accompanying chronic diffuse liver diseases of various etiology.
Materials and methods. In a multicenter open-label comparative study of the safety and efficacy of Remaxol (inosine + meglumine + methionine + nicotinamide + succinic acid) 317 patients aged 18 to 65 years were randomized into 2 groups: patients of the experimental group (n=168) received intravenous Remaxol, solution for infusion, 400 ml, and patients of the control group (n=149) Heptral (S-adenosyl-L-methionine) 800 mg. The duration of treatment was 10 days. The primary efficacy endpoint was the proportion of patients who responded to therapy, as demonstrated by dynamics of laboratory parameters of liver functional status: decrease in gamma glutamyl transpeptidase level by 40%, and/or alkaline phosphatase level by 30%, and/or decrease total bilirubin level by 30% from baseline by the end of the treatment course.
Results. The proportion of responders was 51% in the Remaxol group vs. 44.9% in the Heptral group (p=0.303); the lower limit of the one-sided 95% confidence interval for the difference in the proportions of responders was -4.01%, which exceeds the non-inferiority margin pre-defined by the study protocol, thus, the non-inferiority hypothesis was proven, i.e. Remaxol at a dose of 400 ml/day demonstrates similar efficacy to Heptral at a dose of 800 mg/day in patients with intrahepatic cholestasis syndrome associated with chronic diffuse liver diseases. Similar positive trends in the levels of transaminases, total bilirubin and the severity of pruritus were revealed in both treatment groups. We did not reveal statistically significant between-group differences in the frequency of adverse events definitely related to the study treatment.
Conclusion. Administration of Remaxol as a part of the pathogenetic therapy of patients with intrahepatic cholestasis syndrome who need hepatoprotection is justified.
Collapse
|
7
|
Li H, Guan Y, Han C, Zhang Y, Liu Q, Wei W, Ma Y. The pathogenesis, models and therapeutic advances of primary biliary cholangitis. Biomed Pharmacother 2021; 140:111754. [PMID: 34044277 DOI: 10.1016/j.biopha.2021.111754] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/30/2022] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune disease characterized by the destruction of intrahepatic small bile ducts and the presence of antimitochondrial antibody (AMA), eventually progresses to liver fibrosis and cirrhosis. Genetic predisposition and environmental factors are involved in the occurrence of PBC, and the epitopes exposure and the imbalance of autoimmune tolerance are the last straw. The apoptosis of biliary epithelial cell (BEC) leads to the release of autoantigen epitopes, which activate the immune system, and the disorder of innate and adaptive immunity eventually leads to the start of disease. Animal models have unique advantages in investigating the pathogenesis and drug exploitation of PBC. Multiple models have been reported, and spontaneous model and induced model have been widely used in relevant research of PBC in recent years. Currently, the only drugs licensed for PBC are ursodesoxycholic acid (UDCA) and obeticholic acid (OCA). In the last few years, as the learned more about the pathogenesis of PBC, more and more targets have been discovered, and multiple targeted drugs are being in developed. In this review, the pathogenesis, murine models and treatment strategies of PBC were summarized, and the current research status was discussed to provide insights for the further study of PBC.
Collapse
Affiliation(s)
- Hao Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Yanling Guan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Chenchen Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Yu Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Qian Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China.
| | - Yang Ma
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
8
|
Abstract
Three-dimensional (3D) printing techniques have revolutionized the field of tissue engineering. This is especially favorable to construct intricate tissues such as liver, as 3D printing allows for the precise delivery of biomaterials, cells and bioactive molecules in complex geometries. Bioinks made of polymers, of both natural and synthetic origin, have been very beneficial to printing soft tissues such as liver. Using polymeric bioinks, 3D hepatic structures are printed with or without cells and biomolecules, and have been used for different tissue engineering applications. In this review, with the introduction to basic 3D printing techniques, we discuss different natural and synthetic polymers including decellularized matrices that have been employed for the 3D bioprinting of hepatic structures. Finally, we focus on recent advances in polymeric bioinks for 3D hepatic printing and their applications. The studies indicate that much work has been devoted to improvising the design, stability and longevity of the printed structures. Others focus on the printing of tissue engineered hepatic structures for applications in drug screening, regenerative medicine and disease models. More attention must now be diverted to developing personalized structures and stem cell differentiation to hepatic lineage.
Collapse
|
9
|
Funfak A, Bouzhir L, Gontran E, Minier N, Dupuis-Williams P, Gobaa S. Biophysical Control of Bile Duct Epithelial Morphogenesis in Natural and Synthetic Scaffolds. Front Bioeng Biotechnol 2019; 7:417. [PMID: 31921820 PMCID: PMC6923240 DOI: 10.3389/fbioe.2019.00417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
The integration of bile duct epithelial cells (cholangiocytes) in artificial liver culture systems is important in order to generate more physiologically relevant liver models. Understanding the role of the cellular microenvironment on differentiation, physiology, and organogenesis of cholangiocytes into functional biliary tubes is essential for the development of new liver therapies, notably in the field of cholangiophaties. In this study, we investigated the role of natural or synthetic scaffolds on cholangiocytes cyst growth, lumen formation and polarization. We demonstrated that cholangiocyte cyst formation efficiency can be similar between natural and synthetic matrices provided that the mechanical properties of the hydrogels are matched. When using synthetic matrices, we also tried to understand the impact of elasticity, matrix metalloprotease-mediated degradation and integrin ligand density on cyst morphogenesis. We demonstrated that hydrogel stiffness regulates cyst formation. We found that controlling integrin ligand density was key in the establishment of large polarized cysts of cholangiocytes. The mechanism of lumen formation was found to rely on cell self-organization and proliferation. The formed cholangiocyte organoids showed a good MDR1 (multi drug resistance protein) transport activity. Our study highlights the advantages of fully synthetic scaffold as a tool to develop bile duct models.
Collapse
Affiliation(s)
- Anette Funfak
- Institut Pasteur, Biomaterials and Microfluidics Core Facility, Paris, France
| | - Latifa Bouzhir
- Université Paris-Saclay, UMR-S1174 INSERM, Orsay, France
| | - Emilie Gontran
- Université Paris-Saclay, UMR-S1174 INSERM, Orsay, France
| | - Nicolas Minier
- Institut Pasteur, Biomaterials and Microfluidics Core Facility, Paris, France.,Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France
| | - Pascale Dupuis-Williams
- Université Paris-Saclay, UMR-S1174 INSERM, Orsay, France.,ESPCI, PSL University, Paris, France
| | - Samy Gobaa
- Institut Pasteur, Biomaterials and Microfluidics Core Facility, Paris, France
| |
Collapse
|
10
|
Menon S, Holt A. Large-duct cholangiopathies: aetiology, diagnosis and treatment. Frontline Gastroenterol 2019; 10:284-291. [PMID: 31288256 PMCID: PMC6583582 DOI: 10.1136/flgastro-2018-101098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/06/2018] [Accepted: 12/09/2018] [Indexed: 02/04/2023] Open
Abstract
Cholangiopathies describe a group of conditions affecting the intrahepatic and extrahepatic biliary tree. Impairment to bile flow and chronic cholestasis cause biliary inflammation, which leads to more permanent damage such as destruction of the small bile ducts (ductopaenia) and biliary cirrhosis. Most cholangiopathies are progressive and cause end-stage liver disease unless the physical obstruction to biliary flow can be reversed. This review considers large-duct cholangiopathies, such as primary sclerosing cholangitis, ischaemic cholangiopathy, portal biliopathy, recurrent pyogenic cholangitis and Caroli disease.
Collapse
Affiliation(s)
- Shyam Menon
- Department of Hepatology and Liver Transplantation, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK,Department of Gastroenterology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | - Andrew Holt
- Department of Hepatology and Liver Transplantation, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
11
|
Fibroinflammatory Liver Injuries as Preneoplastic Condition in Cholangiopathies. Int J Mol Sci 2018; 19:ijms19123875. [PMID: 30518128 PMCID: PMC6321547 DOI: 10.3390/ijms19123875] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 02/08/2023] Open
Abstract
The cholangipathies are a class of liver diseases that specifically affects the biliary tree. These pathologies may have different etiologies (genetic, autoimmune, viral, or toxic) but all of them are characterized by a stark inflammatory infiltrate, increasing overtime, accompanied by an excess of periportal fibrosis. The cellular types that mount the regenerative/reparative hepatic response to the damage belong to different lineages, including cholagiocytes, mesenchymal and inflammatory cells, which dynamically interact with each other, exchanging different signals acting in autocrine and paracrine fashion. Those messengers may be proinflammatory cytokines and profibrotic chemokines (IL-1, and 6; CXCL1, 10 and 12, or MCP-1), morphogens (Notch, Hedgehog, and WNT/β-catenin signal pathways) and finally growth factors (VEGF, PDGF, and TGFβ, among others). In this review we will focus on the main molecular mechanisms mediating the establishment of a fibroinflammatory liver response that, if perpetuated, can lead not only to organ dysfunction but also to neoplastic transformation. Primary Sclerosing Cholangitis and Congenital Hepatic Fibrosis/Caroli’s disease, two chronic cholangiopathies, known to be prodrome of cholangiocarcinoma, for which several murine models are also available, were also used to further dissect the mechanisms of fibroinflammation leading to tumor development.
Collapse
|
12
|
Gulamhusein AF, Hirschfield GM. Pathophysiology of primary biliary cholangitis. Best Pract Res Clin Gastroenterol 2018; 34-35:17-25. [PMID: 30343706 DOI: 10.1016/j.bpg.2018.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/22/2018] [Indexed: 01/31/2023]
Abstract
Primary biliary cholangitis is a prototypical autoimmune disease characterized by an overwhelming female predominance, a distinct clinical phenotype, and disease specific anti-mitochondrial antibodies targeted against a well-defined auto-antigen. In a genetically susceptible host, multi-lineage loss of tolerance to the E2 component of the 2-oxo-dehydrogenase pathway and dysregulated immune pathways directed at biliary epithelial cells leads to cholestasis, progressive biliary fibrosis, and cirrhosis in a subset of patients. Several key insights have shed light on the complex pathogenesis of disease. First, characteristic anti-mitochondrial antibodies (AMAs) target lipoic acid containing immunodominant epitopes, particularly pyruvate dehydrogenase complex (PDC-E2), on the inner mitochondrial membrane of BECs. Next, breakdown of the protective apical bicarbonate rich umbrella may sensitize BECs to aberrant apoptotic pathways leaving the antigenic PDC-E2 epitope immunologically tact within an apoptotic bleb. A multi-lineage immune response ensues characterized by an imbalance between effector and regulatory activity resulting in progressive and self-perpetuating biliary injury. Genome wide studies shed light on important pathways involved in disease, key among them being IL-12. Epigenetic mechanisms and microRNAs may play help shed light on the missing heritability and female preponderance of disease. Taken together, these findings have dramatically advanced our understanding of disease and may lead to important therapeutic advances.
Collapse
Affiliation(s)
- Aliya F Gulamhusein
- Toronto Centre for Liver Disease, 200 Elizabeth Street, Toronto, ON, Canada.
| | - Gideon M Hirschfield
- Centre for Liver Research and NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK.
| |
Collapse
|
13
|
Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1270-1278. [DOI: 10.1016/j.bbadis.2017.07.024] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023]
|
14
|
Sripa B, Tangkawattana S, Brindley PJ. Update on Pathogenesis of Opisthorchiasis and Cholangiocarcinoma. ADVANCES IN PARASITOLOGY 2018; 102:97-113. [PMID: 30442312 DOI: 10.1016/bs.apar.2018.10.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Infection with the food-borne liver fluke Opisthorchis viverrini causes cholangiocarcinoma (CCA). Whereas the cause of CCA in the West remains obscure, the principal risk factor in Thailand is opisthorchiasis. Here, we review recent findings on the pathogenesis of opisthorchiasis and CCA focusing on helminth molecules/toxic metabolites, host-parasite interaction, endocytosis, immunopathology/inflammatory responses, free radical production, molecular genetic alterations, and multifactorial including coinfections driving to CCA development.
Collapse
|
15
|
|
16
|
Yoo KS, Lim WT, Choi HS. Biology of Cholangiocytes: From Bench to Bedside. Gut Liver 2017; 10:687-98. [PMID: 27563020 PMCID: PMC5003190 DOI: 10.5009/gnl16033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/14/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022] Open
Abstract
Cholangiocytes, the lining epithelial cells in bile ducts, are an important subset of liver cells. They are activated by endogenous and exogenous stimuli and are involved in the modification of bile volume and composition. They are also involved in damaging and repairing the liver. Cholangiocytes have many functions including bile production. They are also involved in transport processes that regulate the volume and composition of bile. Cholangiocytes undergo proliferation and cell death under a variety of conditions. Cholangiocytes have functional and morphological heterogenecity. The immunobiology of cholangiocytes is important, particularly for understanding biliary disease. Secretion of different proinflammatory mediators, cytokines, and chemokines suggests the major role that cholangiocytes play in inflammatory reactions. Furthermore, paracrine secretion of growth factors and peptides mediates extensive cross-talk with other liver cells, including hepatocytes, stellate cells, stem cells, subepithelial myofibroblasts, endothelial cells, and inflammatory cells. Cholangiopathy refers to a category of chronic liver diseases whose primary disease target is the cholangiocyte. Cholangiopathy usually results in end-stage liver disease requiring liver transplant. We summarize the biology of cholangiocytes and redefine the concept of cholangiopathy. We also discuss the recent progress that has been made in understanding the pathogenesis of cholangiopathy and how such progress has influenced therapy.
Collapse
Affiliation(s)
- Kyo-Sang Yoo
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Woo Taek Lim
- Korea University School of Medicine, Seoul, Korea
| | - Ho Soon Choi
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Grammatikopoulos T, Sambrotta M, Strautnieks S, Foskett P, Knisely AS, Wagner B, Deheragoda M, Starling C, Mieli-Vergani G, Smith J, Bull L, Thompson RJ. Mutations in DCDC2 (doublecortin domain containing protein 2) in neonatal sclerosing cholangitis. J Hepatol 2016; 65:1179-1187. [PMID: 27469900 PMCID: PMC5116266 DOI: 10.1016/j.jhep.2016.07.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Neonatal sclerosing cholangitis (NSC) is a severe neonatal-onset cholangiopathy commonly leading to liver transplantation (LT) for end-stage liver disease in childhood. Liver biopsy findings histopathologically resemble those in biliary atresia (BA); however, in NSC extrahepatic bile ducts are patent, whilst in BA their lumina are obliterated. NSC is commonly seen in consanguineous kindreds, suggesting autosomal recessive inheritance. METHODS From 29 NSC patients (24 families) identified, DNA was available in 24 (21 families). Thirteen (7 male) patients (12 families) of consanguineous parentage were selected for whole exome sequencing. Sequence variants were filtered for homozygosity, pathogenicity, minor allele frequency, quality score, and encoded protein expression pattern. RESULTS Four of 13 patients were homozygous and two were compound heterozygous for mutations in the doublecortin domain containing 2 gene (DCDC2), which encodes DCDC2 protein and is expressed in cholangiocyte cilia. Another 11 patients were sequenced: one (with one sibling pair) was compound heterozygous for DCDC2 mutations. All mutations were protein-truncating. In available liver tissue from patients with DCDC2 mutations, immunostaining for human DCDC2 and the ciliary protein acetylated alpha-tubulin (ACALT) showed no expression (n=6) and transmission electron microscopy found that cholangiocytes lacked primary cilia (n=5). DCDC2 and ACALT were expressed in NSC patients without DCDC2 mutations (n=22). Of the patients carrying DCDC2 mutations, one died awaiting LT; five came to LT, of whom one died 2years later. The other 4 are well. CONCLUSION Among 24 NSC patients with available DNA, 7 had mutations in DCDC2 (6 of 19 families). NSC patients in substantial proportion harbour mutations in DCDC2. Their disease represents a novel liver-based ciliopathy. LAY SUMMARY Neonatal sclerosing cholangitis (NSC) is a rare genetic form of liver disease presenting in infancy. Through next generation sequencing we identified mutations in the gene encoding for doublecortin domain containing 2 (DCDC2) protein in a group of NSC children. DCDC2 is a signalling and structural protein found in primary cilia of cholangiocytes. Cholangiocytes are the cells forming the biliary system which is the draining system of the liver.
Collapse
Affiliation(s)
- Tassos Grammatikopoulos
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK; Institute of Liver Studies, Division of Transplantation Immunology and Mucosal Biology, King's College London, London, UK.
| | - Melissa Sambrotta
- Institute of Liver Studies, Division of Transplantation Immunology and Mucosal Biology, King's College London, London, UK
| | | | - Pierre Foskett
- Institute of Liver Studies, King's College Hospital, London, UK
| | - A S Knisely
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Bart Wagner
- Histopathology Department, Royal Hallamshire Hospital, Sheffield, UK
| | | | - Chris Starling
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Giorgina Mieli-Vergani
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK; Institute of Liver Studies, Division of Transplantation Immunology and Mucosal Biology, King's College London, London, UK
| | - Joshua Smith
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Laura Bull
- Liver Center Laboratory, Department of Medicine and Institute for Human Genetics, University of California San Francisco, CA, USA
| | - Richard J Thompson
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK; Institute of Liver Studies, Division of Transplantation Immunology and Mucosal Biology, King's College London, London, UK
| |
Collapse
|
18
|
Sun Y, Chi BR. Application of induced pluripotent stem cells in cholangiopathies. Shijie Huaren Xiaohua Zazhi 2016; 24:4247-4252. [DOI: 10.11569/wcjd.v24.i31.4247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are similar to embryonic stem cells (ESCs) in morphology, gene expression, cell self-renewal and differentiation potential. They avoid the problem of immune rejection and ethical issues associated with the application of ESCs. The application of iPSCs in a variety of diseases provides favorable experiences to the research of liver diseases. Cholangiopathies, such as primary biliary cirrhosis and primary sclerosing cholangitis, refer to a category of uncommon diseases that possess unclear pathogenesis, lack effective treatment and have a poor prognosis. Hence, investigating cholangiopathies-derived, individualized iPSCs and their differentiation into functional cells can mimic the disease phenotype and pathological process in vitro. The application of these cells has great significance for pathogenesis exploration, drug screening and therapeutic evaluation.
Collapse
|
19
|
Macrophage Depletion Attenuates Extracellular Matrix Deposition and Ductular Reaction in a Mouse Model of Chronic Cholangiopathies. PLoS One 2016; 11:e0162286. [PMID: 27618307 PMCID: PMC5019458 DOI: 10.1371/journal.pone.0162286] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023] Open
Abstract
Chronic cholangiopathies, such as primary and secondary sclerosing cholangitis, are progressive disease entities, associated with periportal accumulation of inflammatory cells, encompassing monocytes and macrophages, peribiliary extracellular matrix (ECM) deposition and ductular reaction (DR). This study aimed to elucidate the relevance of macrophages in the progression of chronic cholangiopathies through macrophage depletion in a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) mouse model. One group of mice received a single i.p. injection of Clodronate encapsulated liposomes (CLOLipo) at day 7 of a 14 day DDC treatment, while control animals were co-treated with PBSLipo instead. Mice were sacrificed after 7 or respectively 14 days of treatment for immunohistochemical assessment of macrophage recruitment (F4/80), ECM deposition (Sirius Red, Laminin) and DR (CK19). Macrophage depletion during a 14 day DDC treatment resulted in a significant inhibition of ECM deposition. Porto-lobular migration patterns of laminin-rich ECM and ductular structures were significantly attenuated and a progression of DR was effectively inhibited by macrophage depletion. CLOLipo co-treatment resulted in a confined DR to portal regions without amorphous cell clusters. This study suggests that therapeutic options selectively directed towards macrophages might represent a feasible treatment for chronic cholestatic liver diseases.
Collapse
|
20
|
MicroRNAs in the Cholangiopathies: Pathogenesis, Diagnosis, and Treatment. J Clin Med 2015; 4:1688-712. [PMID: 26343736 PMCID: PMC4600153 DOI: 10.3390/jcm4091688] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 12/23/2022] Open
Abstract
The cholangiopathies are a group of liver diseases resulting from different etiologies but with the cholangiocyte as the primary target. As a group, the cholangiopathies result in significant morbidity and mortality and represent one of the main indications for liver transplant in both children and adults. Contributing to this situation is the absence of a thorough understanding of their pathogenesis and a lack of adequate diagnostic and prognostic biomarkers. MicroRNAs are small non-coding RNAs that modify gene expression post-transcriptionally. They have been implicated in the pathogenesis of many diseases, including the cholangiopathies. Thus, in this review we provide an overview of the literature on miRNAs in the cholangiopathies and discuss future research directions.
Collapse
|
21
|
Abstract
Cholangiocytes (ie, the epithelial cells that line the bile ducts) are an important subset of liver cells. They are actively involved in the modification of bile volume and composition, are activated by interactions with endogenous and exogenous stimuli (eg, microorganisms, drugs), and participate in liver injury and repair. The term cholangiopathies refers to a category of chronic liver diseases that share a central target: the cholangiocyte. The cholangiopathies account for substantial morbidity and mortality given their progressive nature, the challenges associated with clinical management, and the lack of effective medical therapies. Thus, cholangiopathies usually result in end-stage liver disease requiring liver transplant to extend survival. Approximately 16% of all liver transplants performed in the United States between 1988 and 2014 were for cholangiopathies. For all these reasons, cholangiopathies are an economic burden on patients, their families, and society. This review offers a concise summary of the biology of cholangiocytes and describes a conceptual framework for development of the cholangiopathies. We also present the recent progress made in understanding the pathogenesis of and how this knowledge has influenced therapies for the 6 common cholangiopathies-primary biliary cirrhosis, primary sclerosing cholangitis, cystic fibrosis involving the liver, biliary atresia, polycystic liver disease, and cholangiocarcinoma-because the latest scientific progress in the field concerns these conditions. We performed a search of the literature in PubMed for published papers using the following terms: cholangiocytes, biliary epithelia, cholestasis, cholangiopathy, and biliary disease. Studies had to be published in the past 5 years (from June 1, 2009, through May 31, 2014), and non-English studies were excluded.
Collapse
Affiliation(s)
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN.
| |
Collapse
|
22
|
Godoy V, Banales JM, Medina JF, Pastor-Anglada M. Functional crosstalk between the adenosine transporter CNT3 and purinergic receptors in the biliary epithelia. J Hepatol 2014; 61:1337-43. [PMID: 25034758 DOI: 10.1016/j.jhep.2014.06.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/17/2014] [Accepted: 06/27/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Both hepatocytes and cholangiocytes release ATP into the bile, where it acts as a potent autocrine/paracrine stimulus that activates biliary secretory mechanisms. ATP is known to be metabolized into multiple breakdown products, ultimately yielding adenosine. However, the elements implicated in the adenosine-dependent purinergic regulation of cholangiocytes are not known. METHODS Normal rat cholangiocytes (NRCs) were used to study the expression of adenosine receptors and transporters and their functional interactions at the apical and basolateral membrane domains of polarized cholangiocytes. RESULTS We found that: (1) cholangiocytes exclusively express two concentrative nucleoside transporters (CNT) known to be efficient adenosine carriers: CNT3, located at the apical membrane, and CNT2, located at apical and basolateral membrane domains; (2) in both domains, NRCs also express the high affinity adenosine receptor A2A, which modulated the activity of apical CNT3 in a domain-specific manner; (3) the regulation exerted by A2A on CNT3 was dependent upon the cAMP/PKA/ERK/CREB axis, intracellular trafficking mechanisms and AMPK phosphorylation; (4) secretin increased the activity of the apically-located CNT3, and promoted additional basolateral CNT3-related activity; and (5) extracellular ATP (a precursor of adenosine) was able to exert an inhibitory effect on the apical activity of both CNT3 and CNT2. CONCLUSIONS This study uncovered the functional expression of nucleoside transporters in cholangiocytes and provides evidence for direct crosstalks between adenosine transporters and receptors for adenosine and its natural extracellular precursor, ATP. Our data anticipate the possibility of adenosine playing a major role in the physiopathology of the biliary epithelia.
Collapse
Affiliation(s)
- Valeria Godoy
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Spain
| | - Jesús M Banales
- Department of Liver Diseases, Biodonostia Research Institute (Donostia University Hospital), IKERBASQUE (Basque Foundation for Science), University of Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Spain
| | - Juan F Medina
- Molecular Genetics, Division of Gene Therapy and Hepatology, School of Medicine and CIMA of the University of Navarra, Pamplona, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Spain
| | - Marçal Pastor-Anglada
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Spain.
| |
Collapse
|
23
|
Poling HM, Mohanty SK, Tiao GM, Huppert SS. A comprehensive analysis of aquaporin and secretory related gene expression in neonate and adult cholangiocytes. Gene Expr Patterns 2014; 15:96-103. [PMID: 24929031 PMCID: PMC4283140 DOI: 10.1016/j.gep.2014.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/25/2014] [Accepted: 05/12/2014] [Indexed: 12/23/2022]
Abstract
Canalicular bile is secreted by hepatocytes and then passes through the intrahepatic bile ducts, comprised of cholangiocytes, to reach the extrahepatic biliary system. In addition to providing a conduit for bile to drain from the liver, cholangiocytes play an active role in modifying bile composition. Bile formation is the result of a series of highly coordinated intricate membrane-transport interactions. Proper systematic regulation of solute and water transport is critical for both digestion and the health of the liver, yet our knowledge of cholangiocyte water and ion transporters and their relative expression patterns remains incomplete. In this report, we provide a comprehensive expression profile of the aquaporin (AQP) family and three receptors/channels known to regulate ion transport in the murine cholangiocyte. In murine intrahepatic cholangiocytes, we found mRNA expression for all twelve of the members of the AQP family of proteins and found temporal changes in the expression profile occurring with age. Using AQP4, an established marker within cholangiocyte physiology, we found that AQP2, AQP5 and AQP6 expression levels to be significantly different between the neonatal and adult time points. Furthermore, there were distinct temporal expression patterns, with that of AQP12 unique in that its expression level decreased with age, whilst the majority of AQPs followed an increasing expression level trend with age. Of the three receptors/channels regulating ion transport in the murine cholangiocyte, only the cystic fibrosis transmembrane conductance regulator was found to follow a consistent trend of decreasing expression coincident with age. We have further validated AQP3 and AQP8 protein localization in both hepatocytes and cholangiocytes. This study emphasizes the need to further appreciate and consider the differences in cholangiocyte biology when treating neonatal and adult hepatobiliary diseases.
Collapse
Affiliation(s)
- Holly M Poling
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States.
| | - Sujit K Mohanty
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States.
| | - Greg M Tiao
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States.
| | - Stacey S Huppert
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States.
| |
Collapse
|
24
|
Wiemuth D, Assmann M, Gründer S. The bile acid-sensitive ion channel (BASIC), the ignored cousin of ASICs and ENaC. Channels (Austin) 2013; 8:29-34. [PMID: 24365967 DOI: 10.4161/chan.27493] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The DEG/ENaC gene family of ion channels is characterized by a high degree of structural similarity and an equally high degree of diversity concerning the physiological function. In humans and rodents, the DEG/ENaC family comprises 2 main subgroups: the subunits of the epithelial Na(+) channel (ENaC) and the subunits of the acid sensing ion channels (ASICs). The bile acid-sensitive channel (BASIC), previously known as BLINaC or INaC, represents a third subgroup within the DEG/ENaC family. Although BASIC was identified more than a decade ago, very little is known about its physiological function. Recent progress in the characterization of this neglected member of the DEG/ENaC family, which is summarized in this focused review, includes the discovery of surprising species differences, its pharmacological characterization, and the identification of bile acids as putative natural activators.
Collapse
Affiliation(s)
- Dominik Wiemuth
- Institute of Physiology; RWTH University Aachen; Aachen, Germany
| | - Marc Assmann
- Institute of Physiology; RWTH University Aachen; Aachen, Germany
| | - Stefan Gründer
- Institute of Physiology; RWTH University Aachen; Aachen, Germany
| |
Collapse
|
25
|
Pollheimer MJ, Fickert P, Stieger B. Chronic cholestatic liver diseases: clues from histopathology for pathogenesis. Mol Aspects Med 2013; 37:35-56. [PMID: 24141039 DOI: 10.1016/j.mam.2013.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 02/06/2023]
Abstract
Chronic cholestatic liver diseases include fibrosing cholangiopathies such as primary biliary cirrhosis or primary sclerosing cholangitis. These and related cholangiopathies clearly display pathologies associated with (auto)immunologic processes. As the cholangiocyte's apical membrane is exposed to the toxic actions of the bile fluid, the interaction of bile with cholangiocytes and the biliary tree in general must be considered to completely understand the pathogenesis of cholangiopathies. While the molecular processes involved in the hepatocellular formation of bile are well understood in both normal and pathophysiologic conditions, those in the bile ducts of normal liver and in livers with cholangiopathies lag behind. This survey highlights key mechanisms known to date that are important for the formation of bile by hepatocytes and its modification by the biliary tree. It also delineates the clinical pathophysiologic findings for cholangiopathies and puts them in perspective with current experimental models to reveal the pathogenesis of cholangiopathies and develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Marion J Pollheimer
- Division of Gastroenterology and Hepatology, Laboratory of Experimental and Molecular Hepatology, Department of Internal Medicine, Medical University of Graz, Austria; Institute of Pathology, Medical University of Graz, Austria
| | - Peter Fickert
- Division of Gastroenterology and Hepatology, Laboratory of Experimental and Molecular Hepatology, Department of Internal Medicine, Medical University of Graz, Austria; Institute of Pathology, Medical University of Graz, Austria.
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
26
|
Jung D, York JP, Wang L, Yang C, Zhang A, Francis HL, Webb P, McKeehan WL, Alpini G, Lesage GD, Moore DD, Xia X. FXR-induced secretion of FGF15/19 inhibits CYP27 expression in cholangiocytes through p38 kinase pathway. Pflugers Arch 2013; 466:1011-9. [PMID: 24068255 DOI: 10.1007/s00424-013-1364-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 01/01/2023]
Abstract
Cholangiocytes, bile duct lining cells, actively adjust the amount of cholesterol and bile acids in bile through expression of enzymes and channels involved in transportation and metabolism of the cholesterol and bile acids. Herein, we report molecular mechanisms regulating bile acid biosynthesis in cholangiocytes. Among the cytochrome p450 (Cyp) enzymes involved in bile acid biosynthesis, sterol 27-hydroxylase (Cyp27) that is the rate-limiting enzyme for the acidic pathway of bile acid biosynthesis expressed in cholangiocytes. Expression of other Cyp enzymes for the basic bile acid biosynthesis was hardly detected. The Cyp27 expression was negatively regulated by a hydrophobic bile acid through farnesoid X receptor (FXR), a nuclear receptor activated by bile acid ligands. Activated FXR exerted the negative effects by inducing an expression of fibroblast growth factor 15/19 (FGF15/19). Similar to its repressive function against cholesterol 7α-hydroxylase (Cyp7a1) expression in hepatocytes, secreted FGF15/19 triggered Cyp27 repression in cholangiocytes through interaction with its cognate receptor fibroblast growth factor receptor 4 (FGFR4). The involvements of FXR and FGFR4 for the bile acid-induced Cyp27 repression were confirmed in vivo using knockout mouse models. Different from the signaling in hepatocytes, wherein the FGF15/19-induced repression signaling is mediated by c-Jun N-terminal kinase (JNK), FGF15/19-induced Cyp27 repression in cholangiocytes was mediated by p38 kinase. Thus, the results collectively suggest that cholangiocytes may be able to actively regulate bile acid biosynthesis in cholangiocytes and even hepatocyte by secreting FGF15/19. We suggest the presence of cholangiocyte-mediated intrahepatic feedback loop in addition to the enterohepatic feedback loop against bile acid biosynthesis in the liver.
Collapse
Affiliation(s)
- Dongju Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
LeCluyse EL, Witek RP, Andersen ME, Powers MJ. Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol 2012; 42:501-48. [PMID: 22582993 PMCID: PMC3423873 DOI: 10.3109/10408444.2012.682115] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 03/26/2012] [Accepted: 03/30/2012] [Indexed: 02/07/2023]
Abstract
Prediction of chemical-induced hepatotoxicity in humans from in vitro data continues to be a significant challenge for the pharmaceutical and chemical industries. Generally, conventional in vitro hepatic model systems (i.e. 2-D static monocultures of primary or immortalized hepatocytes) are limited by their inability to maintain histotypic and phenotypic characteristics over time in culture, including stable expression of clearance and bioactivation pathways, as well as complex adaptive responses to chemical exposure. These systems are less than ideal for longer-term toxicity evaluations and elucidation of key cellular and molecular events involved in primary and secondary adaptation to chemical exposure, or for identification of important mediators of inflammation, proliferation and apoptosis. Progress in implementing a more effective strategy for in vitro-in vivo extrapolation and human risk assessment depends on significant advances in tissue culture technology and increasing their level of biological complexity. This article describes the current and ongoing need for more relevant, organotypic in vitro surrogate systems of human liver and recent efforts to recreate the multicellular architecture and hemodynamic properties of the liver using novel culture platforms. As these systems become more widely used for chemical and drug toxicity testing, there will be a corresponding need to establish standardized testing conditions, endpoint analyses and acceptance criteria. In the future, a balanced approach between sample throughput and biological relevance should provide better in vitro tools that are complementary with animal testing and assist in conducting more predictive human risk assessment.
Collapse
Affiliation(s)
- Edward L LeCluyse
- The Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA.
| | | | | | | |
Collapse
|
28
|
Larbcharoensub N, Sornmayura P, Sirachainan E, Wilasrusmee C, Wanmoung H, Janvilisri T. Prognostic value of ABCG2 in moderately and poorly differentiated intrahepatic cholangiocarcinoma. Histopathology 2012; 59:235-46. [PMID: 21884202 DOI: 10.1111/j.1365-2559.2011.03935.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Intrahepatic cholangiocarcinoma (ICC) is a primary hepatic malignancy derived from cholangiocytes. The survival rate of ICC patients is very low, and conventional chemotherapy is not effective in prolonging long-term survival. Adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporters mediate the transport of various substances in several cellular processes. The expression of ABCB1, ABCC1 and ABCG2 has been implicated in multidrug resistance and poor prognosis in several types of cancer. The aim of this study was to examine their expression in normal cholangiocytes and ICC tissues. METHODS AND RESULTS Immunohistochemistry was employed to evaluate the expression of these transporters in 60 cases of ICC with respect to clinicopathological features and patient outcome. The proportions of cases with loss of ABCB1, ABCC1 and ABCG2 expression were 93.3%, 68.3% and 50%, respectively. Only the loss of ABCG2 was related to a worse prognosis (P = 0.031), and was associated with lymph node involvement (P = 0.003) and higher tumour grade (P = 0.028). Furthermore, multivariate analysis showed that the loss of ABCG2 expression was an independent prognostic factor in patients with moderately or poorly differentiated ICC (P = 0.02). CONCLUSIONS These results suggest that ABCG2 may be involved in cholangiocarcinogenesis; the loss of its expression may enhance tumour progression and contribute to aggressive growth of ICC.
Collapse
Affiliation(s)
- Noppadol Larbcharoensub
- Department of Pathology Oncology Unit, Faculty of Medicine at Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
29
|
Wang Z, Zhou J, Lin J, Wang Y, Lin Y, Li X. RhGH attenuates ischemia injury of intrahepatic bile ducts relating to liver transplantation. J Surg Res 2010; 171:300-10. [PMID: 20462597 DOI: 10.1016/j.jss.2010.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/29/2009] [Accepted: 02/04/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND To study the effect of rhGH administration on intrahepatic cholangiocytes relating to liver transplantation with ischemia of hepatic artery, and ultimately, clarify pathologic mechanism of the injury. METHODS Rat orthotopic autologous liver transplantation was performed first. Three hours later, the rats were grouped as followed: HAL (hepatic artery ligation) group; HAL + rhGH (hepatic artery ligation followed by rhGH administration) group; CON (without hepatic artery ligation) group. Specimen was collected after 7 d. ALT and ALP of serum were measured. The pathologic changes of bile ducts of liver tissue were observed. The number of bile ducts and blood vessels in portal area were counted. Immunochemistry for VEGF, VEGFR-2, VEGFR-3, GHR, and IGF-1R of intrahepatic cholangiocytes was performed. Cholangiocytes apoptosis was evaluated by TUNEL analysis. Cholangiocytes proliferation was evaluated by PCNA immunolabeling. RESULTS ALT and ALP of HAL + rhGH group were significantly ameliorated compared with untreated animals (P < 0.05). ALT and ALP of HAL group were significantly higher compared with CON group (P < 0.05). In HAL group, the main injury of bile ducts was not reversible, whereas it was reversible in CON and rhGH groups. In HAL group, the number of bile ducts in portal area decreased, while the number of bile ducts not accompanying blood vessels increased (P < 0.05). In rhGH group, the number of bile ducts in portal area increased, while the number of bile ducts accompanying blood vessels increased compared with HAL group (P < 0.05). The expression of VEGF, VEGFR-2, VEGFR-3, GHR, and IGF-1R was significantly lower in HAL group than in CON group (P < 0.05). Following administration of rhGH to HAL rats, the expression of VEGF, VEGFR-2, VEGFR-3, IGF-1R, and GHR was significantly higher (P < 0.05). Administration of rhGH prevented increase in cholangiocytes apoptosis induced by HAL (P < 0.05). Administration of rhGH promoted increase in cholangiocytes proliferation held by HAL (P < 0.05). CONCLUSIONS Administration of rhGH appears to attenuate ischemia injury of intrahepatic bile ducts relating to liver transplantation. This function is partly related to the capacity that rhGH inhibits the apoptosis of intrahepatic cholangiocytes and prompts the proliferation and angiogenesis by increasing the expression of VEGF, VEGFR2, VEGFR3, GHR, and IGF1-R.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
30
|
López-Sánchez LM, Corrales FJ, Barcos M, Espejo I, Muñoz-Castañeda JR, Rodríguez-Ariza A. Inhibition of nitric oxide synthesis during induced cholestasis ameliorates hepatocellular injury by facilitating S-nitrosothiol homeostasis. J Transl Med 2010; 90:116-127. [PMID: 19806079 DOI: 10.1038/labinvest.2009.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cholestatic liver injury following extra- or intrahepatic bile duct obstruction causes nonparenchymal cell proliferation and matrix deposition leading to end-stage liver disease and cirrhosis. In cholestatic conditions, nitric oxide (NO) is mainly produced by a hepatocyte-inducible NO synthase (iNOS) as a result of enhanced inflow of endotoxins to the liver and also by accumulation of bile salts in hepatocytes and subsequent hepatocellular injury. This study was aimed to investigate the role of NO and S-nitrosothiol (SNO) homeostasis in the development of hepatocellular injury during cholestasis induced by bile duct ligation (BDL) in rats. Male Wistar rats (200-250 g) were divided into four groups (n=10 each), including sham-operated (SO), bile duct-ligated (BDL), tauroursodeoxycholic acid (TUDCA, 50 mg/kg) and S-methylisothiourea (SMT, 25 mg/kg) treated. After 7 days, BDL rats showed elevated serum levels of gamma-glutamiltranspeptidase, aspartate aminotransferase, alanine aminotransferase, LDH, and bilirubin, bile duct proliferation and fibrosis, compared with the SO group. TUDCA treatment did not significantly alter these parameters, but the iNOS inhibitor SMT ameliorated hepatocellular injury, as shown by lower levels of circulating hepatic enzymes and bilirubin, and a decreased grade of bile duct proliferation and fibrosis. Both TUDCA and SMT treatments reversed Mrp2 canalicular pump expression to control levels. However, only SMT treatment significantly lowered the increased levels of plasma NO and S-nitrosation (S-nitrosylation) of liver proteins in BDL rats. Moreover, BDL resulted in a reduction of the S-nitrosoglutathione reductase (GSNOR/Adh5) enzymatic activity and a downregulation of the GSNOR/Adh5 mRNA expression that was reverted by SMT, but not TUDCA, treatment. A total of 25 liver proteins, including S-adenosyl methionine synthetase, betaine-homocysteine S-methyltransferase, Hsp90 and protein disulfide isomerase, were found to be S-nitrosated in BDL rats. In conclusion, the inhibition of NO production during induced cholestasis ameliorates hepatocellular injury. This effect is in part mediated by the improvement of cell proficiency in maintaining SNO homeostasis.
Collapse
Affiliation(s)
- Laura M López-Sánchez
- Unidad de Investigación del Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica, Córdoba 14004, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Experimental obstructive cholestasis: the wound-like inflammatory liver response. FIBROGENESIS & TISSUE REPAIR 2008; 1:6. [PMID: 19014418 PMCID: PMC2637833 DOI: 10.1186/1755-1536-1-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 11/03/2008] [Indexed: 02/08/2023]
Abstract
Obstructive cholestasis causes hepatic cirrhosis and portal hypertension. The pathophysiological mechanisms involved in the development of liver disease are multiple and linked. We propose grouping these mechanisms according to the three phenotypes mainly expressed in the interstitial space in order to integrate them.Experimental extrahepatic cholestasis is the model most frequently used to study obstructive cholestasis. The early liver interstitial alterations described in these experimental models would produce an ischemia/reperfusion phenotype with oxidative and nitrosative stress. Then, the hyperexpression of a leukocytic phenotype, in which Kupffer cells and neutrophils participate, would induce enzymatic stress. And finally, an angiogenic phenotype, responsible for peribiliary plexus development with sinusoidal arterialization, occurs. In addition, an intense cholangiocyte proliferation, which acquires neuroendocrine abilities, stands out. This histopathological finding is also associated with fibrosis.It is proposed that the sequence of these inflammatory phenotypes, perhaps with a trophic meaning, ultimately produces a benign tumoral biliary process - although it poses severe hepatocytic insufficiency. Moreover, the persistence of this benign tumor disease would induce a higher degree of dedifferentiation and autonomy and, therefore, its malign degeneration.
Collapse
|
32
|
Marin JJG. How we have learned about the complexity of physiology, pathobiology and pharmacology of bile acids and biliary secretion. World J Gastroenterol 2008; 14:5617-9. [PMID: 18837076 PMCID: PMC2748194 DOI: 10.3748/wjg.14.5617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During the last decades the concept of bile secretion as merely a way to add detergent components to the intestinal mixture to facilitate fat digestion/absorption and to eliminate side products of heme metabolism has evolved considerably. In the series of mini-reviews that the World Journal of Gastroenterology is to publish in its section of “Highlight Topics”, we will intend to give a brief but updated overview of our knowledge in this field. This introductory letter is intended to thank all scientists who have contributed to the development of this area of knowledge in gastroenterology.
Collapse
|
33
|
Lee SO. [Physiologic and pathologic experimental models for studying cholangiocytes]. THE KOREAN JOURNAL OF HEPATOLOGY 2008; 14:139-49. [PMID: 18617761 DOI: 10.3350/kjhep.2008.14.2.139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cholangiocytes (epithelial cells lining the intra- and extrahepatic bile ducts) and hepatocytes are two major components of liver epithelia. Although cholangiocytes are less numerous than hepatocytes, they are involved in both bile secretion and diverse cellular processes such as cell-cycle phenomena, cell signaling, and interactions with other cells, matrix components, foreign organisms, and xenobiotics. Cholangiocytes are also targets in several human diseases including cholangiocarcinoma, primary sclerosing cholangitis, autoimmune cholangitis, and vanishing bile-duct syndrome. The rapid advances in experimental biology technologies are greatly expanding interest in and knowledge of the physiology and pathophysiology of cholangiocytes. This review focuses on the progress of in vivo and in vitro experimental models in elucidating the physiologic functions of cholangiocytes and the pathophysiology of various cholangiopathies. The following aspects are reviewed: isolation of cholangiocytes from the liver and their heterogeneity, various culture systems, establishment of cholangiocyte cell lines, isolation and usage of intrahepatic bile-duct units, three-dimensional modeling of the bile duct, experimental models for inducing cholangiocyte proliferation, and various cholangiopathies such as cholangiocarcinoma, primary sclerosing cholangitis, and autoimmune cholangitis.
Collapse
Affiliation(s)
- Seung-Ok Lee
- Division of Gatroenterology and Hepatology, Department of Internal Medicine, Chonbuk National University Hospital and Medical School, Jeonju, Korea.
| |
Collapse
|
34
|
Hepatocellular transport in acquired cholestasis: new insights into functional, regulatory and therapeutic aspects. Clin Sci (Lond) 2008; 114:567-88. [PMID: 18377365 DOI: 10.1042/cs20070227] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The recent overwhelming advances in molecular and cell biology have added enormously to our understanding of the physiological processes involved in bile formation and, by extension, to our comprehension of the consequences of their alteration in cholestatic hepatopathies. The present review addresses in detail this new information by summarizing a number of recent experimental findings on the structural, functional and regulatory aspects of hepatocellular transporter function in acquired cholestasis. This comprises (i) a short overview of the physiological mechanisms of bile secretion, including the nature of the transporters involved and their role in bile formation; (ii) the changes induced by nuclear receptors and hepatocyte-enriched transcription factors in the constitutive expression of hepatocellular transporters in cholestasis, either explaining the primary biliary failure or resulting from a secondary adaptive response; (iii) the post-transcriptional changes in transporter function and localization in cholestasis, including a description of the subcellular structures putatively engaged in the endocytic internalization of canalicular transporters and the involvement of signalling cascades in this effect; and (iv) a discussion on how this new information has contributed to the understanding of the mechanism by which anticholestatic agents exert their beneficial effects, or the manner in which it has helped the design of new successful therapeutic approaches to cholestatic liver diseases.
Collapse
|
35
|
|
36
|
Alvaro D, Mancino MG. New insights on the molecular and cell biology of human cholangiopathies. Mol Aspects Med 2007; 29:50-7. [PMID: 18230407 DOI: 10.1016/j.mam.2007.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 09/28/2007] [Indexed: 01/20/2023]
Abstract
Cholangiopathies are diseases of high social impact representing the main indication for liver transplantation in the infanthood and the third in adulthood. Despite the heterogeneous etiology and pathogenesis, cholangiopathies share many different common morphological features and, chronically progress toward a ductupenic condition clinically evidenced by the classical features of a cholestatic syndrome. The primary target of damage in the course of cholangiopathies are cholangiocytes, the epithelia cells lining the biliary tree. A bulk of researches performed in the last decade, highlighted the extraordinary biological properties of cholangiocytes involved in a number of important processes such as bile formation, proliferation, injury repair, fibrosis, angiogenesis and regulation of blood flow. Recent advances on the molecular and cell biology of human cholangiopathies are opening new potential therapeutic perspectives for these diseases.
Collapse
Affiliation(s)
- Domenico Alvaro
- Division of Gastroenterology, Department of Clinical Medicine, Rome, Italy
| | | |
Collapse
|