1
|
Diwan R, Gaytan SL, Bhatt HN, Pena-Zacarias J, Nurunnabi M. Liver fibrosis pathologies and potentials of RNA based therapeutics modalities. Drug Deliv Transl Res 2024; 14:2743-2770. [PMID: 38446352 DOI: 10.1007/s13346-024-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
Liver fibrosis (LF) occurs when the liver tissue responds to injury or inflammation by producing excessive amounts of scar tissue, known as the extracellular matrix. This buildup stiffens the liver tissue, hinders blood flow, and ultimately impairs liver function. Various factors can trigger this process, including bloodborne pathogens, genetic predisposition, alcohol abuse, non-steroidal anti-inflammatory drugs, non-alcoholic steatohepatitis, and non-alcoholic fatty liver disease. While some existing small-molecule therapies offer limited benefits, there is a pressing need for more effective treatments that can truly cure LF. RNA therapeutics have emerged as a promising approach, as they can potentially downregulate cytokine levels in cells responsible for liver fibrosis. Researchers are actively exploring various RNA-based therapeutics, such as mRNA, siRNA, miRNA, lncRNA, and oligonucleotides, to assess their efficacy in animal models. Furthermore, targeted drug delivery systems hold immense potential in this field. By utilizing lipid nanoparticles, exosomes, nanocomplexes, micelles, and polymeric nanoparticles, researchers aim to deliver therapeutic agents directly to specific biomarkers or cytokines within the fibrotic liver, increasing their effectiveness and reducing side effects. In conclusion, this review highlights the complex nature of liver fibrosis, its underlying causes, and the promising potential of RNA-based therapeutics and targeted delivery systems. Continued research in these areas could lead to the development of more effective and personalized treatment options for LF patients.
Collapse
Affiliation(s)
- Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA
| | - Samantha Lynn Gaytan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Interdisciplinary Health Sciences, College of Health Sciences, The University of Texas El Paso, El Paso, Texas, 79968, USA
| | - Himanshu Narendrakumar Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA
| | - Jacqueline Pena-Zacarias
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biological Sciences, College of Science, The University of Texas El Paso, El Paso, Texas, 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA.
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA.
- Department of Interdisciplinary Health Sciences, College of Health Sciences, The University of Texas El Paso, El Paso, Texas, 79968, USA.
- Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
2
|
Pitchumoni CS. Gastrointestinal Physiology and Aging. GERIATRIC GASTROENTEROLOGY 2021:155-200. [DOI: 10.1007/978-3-030-30192-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
3
|
Wang Y, Aoki H, Yang J, Peng K, Liu R, Li X, Qiang X, Sun L, Gurley EC, Lai G, Zhang L, Liang G, Nagahashi M, Takabe K, Pandak WM, Hylemon PB, Zhou H. The role of sphingosine 1-phosphate receptor 2 in bile-acid-induced cholangiocyte proliferation and cholestasis-induced liver injury in mice. Hepatology 2017; 65:2005-2018. [PMID: 28120434 PMCID: PMC5444993 DOI: 10.1002/hep.29076] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/14/2016] [Accepted: 01/19/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED Bile duct obstruction is a potent stimulus for cholangiocyte proliferation, especially for large cholangiocytes. Our previous studies reported that conjugated bile acids (CBAs) activate the protein kinase B (AKT) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathways through sphingosine 1-phosphate receptor (S1PR) 2 in hepatocytes and cholangiocarcinoma cells. It also has been reported that taurocholate (TCA) promotes large cholangiocyte proliferation and protects cholangiocytes from bile duct ligation (BDL)-induced apoptosis. However, the role of S1PR2 in bile-acid-mediated cholangiocyte proliferation and cholestatic liver injury has not been elucidated. Here, we report that S1PR2 is the predominant S1PR expressed in cholangiocytes. Both TCA- and sphingosine-1-phosphate (S1P)-induced activation of ERK1/2 and AKT were inhibited by JTE-013, a specific antagonist of S1PR2, in cholangiocytes. In addition, TCA- and S1P-induced cell proliferation and migration were inhibited by JTE-013 and a specific short hairpin RNA of S1PR2, as well as chemical inhibitors of ERK1/2 and AKT in mouse cholangiocytes. In BDL mice, expression of S1PR2 was up-regulated in whole liver and cholangiocytes. S1PR2 deficiency significantly reduced BDL-induced cholangiocyte proliferation and cholestatic injury, as indicated by significant reductions in inflammation and liver fibrosis in S1PR2 knockout mice. Treatment of BDL mice with JTE-013 significantly reduced total bile acid levels in serum and cholestatic liver injury. CONCLUSION This study suggests that CBA-induced activation of S1PR2-mediated signaling pathways plays a critical role in obstructive cholestasis and may represent a novel therapeutic target for cholestatic liver diseases. (Hepatology 2017;65:2005-2018).
Collapse
Affiliation(s)
- Yongqing Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Hiroaki Aoki
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Jing Yang
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298,China Pharmaceutical University
| | - Kesong Peng
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298,College of Pharmaceutical Science, Wenzhou Medical University
| | - Runping Liu
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Xiaojiaoyang Li
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298,China Pharmaceutical University
| | - Xiaoyan Qiang
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298,China Pharmaceutical University
| | - Lixin Sun
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298,China Pharmaceutical University
| | - Emily C Gurley
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298,McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Guanhua Lai
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, 23298
| | | | - Guang Liang
- College of Pharmaceutical Science, Wenzhou Medical University
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City 951-8510
| | - Kazuaki Takabe
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298,Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, New York, 14263
| | - William M Pandak
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298,McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298,McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, 23298,College of Pharmaceutical Science, Wenzhou Medical University
| |
Collapse
|
4
|
Sakamoto K, Khai NC, Wang Y, Irie R, Takamatsu H, Matsufuji H, Kosai KI. Heparin-binding epidermal growth factor-like growth factor and hepatocyte growth factor inhibit cholestatic liver injury in mice through different mechanisms. Int J Mol Med 2016; 38:1673-1682. [PMID: 27779646 PMCID: PMC5117744 DOI: 10.3892/ijmm.2016.2784] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022] Open
Abstract
In contrast to hepatocyte growth factor (HGF), the therapeutic potential and pathophysiologic roles of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in liver diseases remain relatively unknown. To address the lack of effective pharmacologic treatments for cholestatic liver injuries, as well as to clarify the biologic features of these growth factors, we explored the effects of HB-EGF and HGF in mice with cholestatic liver injury induced by bile duct ligation (BDL). The mice were assessed 3, 5 and/or 14 days after BDL (acute, subacute and/or chronic phases, respectively) and intravenous injection of adenoviral vector expressing LacZ (control), HB-EGF, HGF, or HB-EGF and HGF. HB-EGF, HGF, or a combination of the growth factors exerted potent antioncotic (antinecrotic), antiapoptotic, anticholestatic, and regenerative effects on hepatocytes in vivo, whereas no robust antiapoptotic or regenerative effects were detected in interlobular bile ducts. Based on serum transaminase levels, the acute protective effects of HB-EGF on hepatocytes were greater than those of HGF. On the other hand, liver fibrosis and cholestasis during the chronic phase were more potently inhibited by HGF compared with HB-EGF. Compared with either growth factor alone, combining HB-EGF and HGF produced greater anticholestatic and regenerative effects during the chronic phase. Taken together, these findings suggest that HB-EGF and HGF inhibited BDL-induced cholestatic liver injury, predominantly by exerting acute cytoprotective and chronic antifibrotic effects, respectively; combining the growth factors enhanced the anticholestatic effects and liver regeneration during the chronic phase. Our results contribute to a better understanding of the pathophysiologic roles of HB-EGF and HGF, as well as to the development of novel effective therapies for cholestatic liver injuries.
Collapse
Affiliation(s)
- Kouichi Sakamoto
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Ngin Cin Khai
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Yuqing Wang
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Rie Irie
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Hideo Takamatsu
- Department of Pediatric Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Hiroshi Matsufuji
- Department of Pediatric Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Ken-Ichiro Kosai
- Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| |
Collapse
|
5
|
Ito S, Satoh J, Matsubara T, Shah YM, Ahn SH, Anderson CR, Shan W, Peters JM, Gonzalez FJ. Cholestasis induces reversible accumulation of periplakin in mouse liver. BMC Gastroenterol 2013; 13:116. [PMID: 23849208 PMCID: PMC3716950 DOI: 10.1186/1471-230x-13-116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 07/12/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Periplakin (PPL) is a rod-shaped cytolinker protein thought to connect cellular adhesion junctional complexes to cytoskeletal filaments. PPL serves as a structural component of the cornified envelope in the skin and interacts with various types of proteins in cultured cells; its level decreases dramatically during tumorigenic progression in human epithelial tissues. Despite these intriguing observations, the physiological roles of PPL, especially in non-cutaneous tissues, are still largely unknown. Because we observed a marked fluctuation of PPL expression in mouse liver in association with the bile acid receptor farnesoid X receptor (FXR) and cholestasis, we sought to characterize the role of PPL in the liver and determine its contributions to the etiology and pathogenesis of cholestasis. METHODS Time- and context-dependent expression of PPL in various mouse models of hepatic and renal disorders were examined by immunohistochemistry, western blotting, and quantitative real-time polymerase chain reactions. RESULTS The hepatic expression of PPL was significantly decreased in Fxr-/- mice. In contrast, the expression was dramatically increased during cholestasis, with massive PPL accumulation observed at the boundaries of hepatocytes in wild-type mice. Interestingly, the hepatic accumulation of PPL resulting from cholestasis was reversible. In addition, similar accumulation of PPL at cellular boundaries was found in epithelial cells around renal tubules upon ureteral obstruction. CONCLUSIONS PPL may be involved in the temporal accommodation to fluid stasis in different tissues. Further examination of the roles for PPL may lead to the discovery of a novel mechanism for cellular protection by cytolinkers that is applicable to many tissues and in many contexts.
Collapse
Affiliation(s)
- Shinji Ito
- Biofrontier Platform, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Cirrhosis and chronic liver disease are common illnesses that cause high mortality and require treatment. Medication use in these patients may be challenging because of idiosyncratic or dose-dependent drug toxicity. Therefore, drug choice and drug dose adaptations play an important role. The objective of this clinical review is to discuss the literature about and challenges in drug use in patients with chronic liver disease. To make good decisions regarding drug choice and dose adjustments in these patients, well-defined clinical information about diagnoses and laboratory results (creatinine, international normalized ratio, bilirubin, and serologies) as well as in some instances, pathological findings like liver biopsies are needed. In a second step, these data should be organized in electronically supported clinical decision systems, which can then assist providers in making choices about medication selection and dosage. In summary, although substantial research has been done in the field of drug use in patients with liver dysfunction, a great deal also remains to be learned. Although many of these patients can now be identified, it is still very difficult to assess their individual level of hepatic function. The degree of risk associated with drug use and how best to use medications in these patients represents an important area for further study. In the future, pharmacogenomics and electronic linking of clinical data may well prove helpful for making decisions about optimal drug choices in this complex group of patients.
Collapse
|
7
|
Shapiro R, Anikster Y, Yardeni T, Korem S, Hartman K, Shamir R, Broide E, Levine A, Bujanover Y, Bercovich D. DHPLC screening for mutations in progressive familial intrahepatic cholestasis patients. J Hum Genet 2010; 55:308-13. [PMID: 20414253 DOI: 10.1038/jhg.2010.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Progressive familial intrahepatic cholestasis (PFIC) is a group of rare heterogeneous autosomal recessive disorders characterized by metabolic defects in biliary proteins involved in the formation and transfer of bile acids in the liver. The genotype-phenotype correlation is not always clear. Mutations in the ATP8B1, BSEP and MDR3 genes have been associated with PFIC1, PFIC2 and PFIC3, respectively. This study sought to characterize the molecular genetic basis for PFIC subtypes in Israel. It was conducted on 14 children with PFIC and their families; 10 with a PFIC1 or PFIC2 phenotype and 4 with a PFIC3 phenotype. Using denaturing high-performance liquid chromatography (DHPLC), five different mutations were identified in four affected families: three novel mutations in BSEP (G19R-g181c, S226L-c803t and G877R-g2755a), one novel mutation in MDR3 (IVS14+6 t/c) and one heterozygous mutation in ATP8B1 (R600W, in a family with the PFIC1/PFIC2 phenotype). The cause of PFIC was identified in 20% of the families tested. These findings indicate the probable involvement of additional genes in PFIC and the need for further studies to determine whether the abnormality lies on the RNA or protein level. A better understanding of the phenotype-genotype correlation in PFIC will lead to improved diagnoses and treatments.
Collapse
Affiliation(s)
- Rivka Shapiro
- Institute of Gastroenterology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Racine R, Grandcolas L, Blanchardon E, Gourmelon P, Veyssiere G, Souidi M. Hepatic cholesterol metabolism following a chronic ingestion of cesium-137 starting at fetal stage in rats. JOURNAL OF RADIATION RESEARCH 2010; 51:37-45. [PMID: 20173315 DOI: 10.1269/jrr.09064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The Chernobyl accident released many radionuclides in the environment. Some are still contaminating the ground and thus the people through dietary intake. The long-term sanitary consequences of this disaster are still unclear and several biological systems remain to be investigated. Cholesterol metabolism is of particular interest, with regard to the link established between atherosclerosis and exposure to high-dose ionizing radiations. This study assesses the effect of cesium-137 on cholesterol metabolism in rats, after a chronic exposure since fetal life. To achieve this, rat dams were contaminated with cesium-137-supplemented water from two weeks before mating until the weaning of the pups. Thereafter, the weaned rats were given direct access to the contaminated drinking water until the age of 9 months. After the sacrifice, cholesterol metabolism was investigated in the liver at gene expression and protein level. The cholesterolemia was preserved, as well as the cholesterol concentration in the liver. At molecular level, the gene expressions of ACAT 2 (a cholesterol storage enzyme), of Apolipoprotein A-I and of RXR (a nuclear receptor involved in cholesterol metabolism) were significantly decreased. In addition, the enzymatic activity of CYP27A1, which catabolizes cholesterol, was increased. The results indicate that the rats seem to adapt to the cesium-137 contamination and display modifications of hepatic cholesterol metabolism only at molecular level and within physiological range.
Collapse
Affiliation(s)
- Radjini Racine
- Institute for Radiological Protection and Nuclear Safety, Radiological Protection and Human Health Division, Radiobiology and Epidemiology Department, Laboratory of Experimental Toxicology, Fontenay-aux-Roses Cedex, France
| | | | | | | | | | | |
Collapse
|
9
|
Racine R, Grandcolas L, Grison S, Gourmelon P, Guéguen Y, Veyssière G, Souidi M. Molecular modifications of cholesterol metabolism in the liver and the brain after chronic contamination with cesium 137. Food Chem Toxicol 2009; 47:1642-7. [DOI: 10.1016/j.fct.2009.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 03/19/2009] [Accepted: 04/15/2009] [Indexed: 11/15/2022]
|
10
|
IKK1 and IKK2 cooperate to maintain bile duct integrity in the liver. Proc Natl Acad Sci U S A 2008; 105:9733-8. [PMID: 18606991 DOI: 10.1073/pnas.0800198105] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Inflammatory destruction of intrahepatic bile ducts is a common cause of vanishing bile duct syndrome and cholestasis, often progressing to biliary cirrhosis and liver failure. However, the molecular mechanisms underlying the pathogenesis of inflammatory biliary disease are poorly understood. Here, we show that the two IkappaB kinases, IKK1/IKKalpha and IKK2/IKKbeta, display distinct collaborative and specific functions that are essential to protect the liver from cytokine toxicity and bile duct disease. Combined conditional ablation of IKK1 and IKK2, but not of each kinase alone, sensitized the liver to in vivo LPS challenge, uncovering a redundant function of the two IkappaB kinases in mediating canonical NF-kappaB signaling in hepatocytes and protecting the liver from TNF-induced failure. Unexpectedly, mice with combined ablation of IKK1 and IKK2 or IKK1 and NEMO spontaneously developed severe jaundice and fatal cholangitis characterized by inflammatory destruction of small portal bile ducts. This bile duct disease was caused by the combined impairment of canonical NF-kappaB signaling together with inhibition of IKK1-specific functions affecting the bile-blood barrier. These results reveal a novel function of the two IkappaB kinases in cooperatively regulating liver immune homeostasis and bile duct integrity and suggest that IKK signaling may be implicated in human biliary diseases.
Collapse
|
11
|
Ding Y, Zhao L, Mei H, Zhang SL, Huang ZH, Duan YY, Ye P. Exploration of Emodin to treat alpha-naphthylisothiocyanate-induced cholestatic hepatitis via anti-inflammatory pathway. Eur J Pharmacol 2008; 590:377-86. [PMID: 18590720 DOI: 10.1016/j.ejphar.2008.06.044] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Revised: 05/11/2008] [Accepted: 06/02/2008] [Indexed: 01/18/2023]
Abstract
Emodin, 1,3,8-trihydroxy-6-methyl-anthraquinone, is an anthraquinone derivative from the roots of Rheum officinale Baill that has been used to treat many diseases in digestive system for thousands of years. This study is to disclose the mechanism of Emodin to treat cholestatic hepatitis via anti-inflammatory pathway. Rats were divided into Emodin, ursodeoxycholic acid, Dexamethasone, model and blank control groups with treatment of respective agent after administration of alpha-naphthylisothiocyanate. At 24 h, 48 h and 72 h time points after administration, liver function, pathological changes of hepatic tissue, tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), cytokine-induced neutrophil chemoattractant (CINC)-1, macrophage inflammatory protein (MIP)-2, intercellular adhesion molecule (ICAM)-1, nuclear factor (NF)-kappaB and early growth response (Egr)-1, nitric oxide (NO) and inducible nitric oxide synthase (iNOS) were detected. As a result, compared to the controls, Emodin had a notable effect on rat's living condition, pathological manifestation of hepatic tissue, total bilirubin, direct bilirubin, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) (P<0.05), but had little effect on alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT) and total bile acid. With Emodin intervention, levels of TNF-alpha, IL-6, MPO, MDA, CINC-1, MIP-2, ICAM-1 and translocation of NF-kappaB were remarkably decreased, and levels of NO and iNOS were markedly increased (P<0.05). Emodin had no effect on Egr-1. In conclusion, Emodin has a protective effect on hepatocytes and a restoring activity on cholestatic hepatitis by anti-inflammation. The effects are mainly due to antagonizing pro-inflammatory cytokines and mediators, inhibiting oxidative damage, improving hepatic microcirculation, reducing impairment signals, and controlling neutrophil infiltration.
Collapse
Affiliation(s)
- Yan Ding
- Department of Gastroenterology and Hepatology, Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, PR China
| | | | | | | | | | | | | |
Collapse
|
12
|
Aromataris EC, Castro J, Rychkov GY, Barritt GJ. Store-operated Ca(2+) channels and Stromal Interaction Molecule 1 (STIM1) are targets for the actions of bile acids on liver cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:874-85. [PMID: 18342630 DOI: 10.1016/j.bbamcr.2008.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 02/07/2008] [Accepted: 02/11/2008] [Indexed: 12/18/2022]
Abstract
Cholestasis is a significant contributor to liver pathology and can lead to primary sclerosis and liver failure. Cholestatic bile acids induce apoptosis and necrosis in hepatocytes but these effects can be partially alleviated by the pharmacological application of choleretic bile acids. These actions of bile acids on hepatocytes require changes in the release of Ca(2+) from intracellular stores and in Ca(2+) entry. However, the nature of the Ca(2+) entry pathway affected is not known. We show here using whole cell patch clamp experiments with H4-IIE liver cells that taurodeoxycholic acid (TDCA) and other choleretic bile acids reversibly activate an inwardly-rectifying current with characteristics similar to those of store-operated Ca(2+) channels (SOCs), while lithocholic acid (LCA) and other cholestatic bile acids inhibit SOCs. The activation of Ca(2+) entry was observed upon direct addition of the bile acid to the incubation medium, whereas the inhibition of SOCs required a 12 h pre-incubation. In cells loaded with fura-2, choleretic bile acids activated a Gd(3+)-inhibitable Ca(2+) entry, while cholestatic bile acids inhibited the release of Ca(2+) from intracellular stores and Ca(2+) entry induced by 2,5-di-(tert-butyl)-1,4-benzohydro-quinone (DBHQ). TDCA and LCA each caused a reversible redistribution of stromal interaction molecule 1 (STIM1, the endoplasmic reticulum Ca(2+) sensor required for the activation of Ca(2+) release-activated Ca(2+) channels and some other SOCs) to puncta, similar to that induced by thapsigargin. Knockdown of Stim1 using siRNA caused substantial inhibition of Ca(2+)-entry activated by choleretic bile acids. It is concluded that choleretic and cholestatic bile acids activate and inhibit, respectively, the previously well-characterised Ca(2+)-selective hepatocyte SOCs through mechanisms which involve the bile acid-induced redistribution of STIM1.
Collapse
Affiliation(s)
- Edoardo C Aromataris
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | | | | | | |
Collapse
|