1
|
Wang Y, Chatterjee E, Li G, Xu J, Xiao J. Force-sensing protein expression in response to cardiovascular mechanotransduction. EBioMedicine 2024; 110:105412. [PMID: 39481337 PMCID: PMC11554632 DOI: 10.1016/j.ebiom.2024.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Force-sensing biophysical cues in microenvironment, including extracellular matrix performances, stretch-mediated mechanics, shear stress and flow-induced hemodynamics, have a significant influence in regulating vascular morphogenesis and cardiac remodeling by mechanotransduction. Once cells perceive these extracellular mechanical stimuli, Piezo activation promotes calcium influx by forming integrin-adhesion-coupling receptors. This induces robust contractility of cytoskeleton structures to further transmit biomechanical alternations into nuclei by regulating Hippo-Yes associated protein (YAP) signaling pathway between cytoplasmic and nuclear translocation. Although biomechanical stimuli are widely studied in cardiovascular diseases, the expression of force-sensing proteins in response to cardiovascular mechanotransduction has not been systematically concluded. Therefore, this review will summarize the force-sensing Piezo, cytoskeleton and YAP proteins to mediate extracellular mechanics, and also give the prominent emphasis on intrinsic connection of these mechanical proteins and cardiovascular mechanotransduction. Extensive insights into cardiovascular mechanics may provide some new strategies for cardiovascular clinical therapy.
Collapse
Affiliation(s)
- Yongtao Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai 200444, China
| | - Emeli Chatterjee
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jiahong Xu
- Department of Cardiology, Shanghai Gongli Hospital, Shanghai 200135, China.
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Seeler D, Grdseloff N, Rödel CJ, Kloft C, Abdelilah-Seyfried S, Huisinga W. Novel mathematical approach to accurately quantify 3D endothelial cell morphology and vessel geometry based on fluorescently marked endothelial cell contours: Application to the dorsal aorta of wild-type and Endoglin-deficient zebrafish embryos. PLoS Comput Biol 2024; 20:e1011924. [PMID: 39213451 PMCID: PMC11392406 DOI: 10.1371/journal.pcbi.1011924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/12/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Endothelial cells, which line the lumen of blood vessels, locally sense and respond to blood flow. In response to altered blood flow dynamics during early embryonic development, these cells undergo shape changes that directly affect vessel geometry: In the dorsal aorta of zebrafish embryos, elongation of endothelial cells in the direction of flow between 48 and 72 hours post fertilization (hpf) reduces the vessel's diameter. This remodeling process requires Endoglin; excessive endothelial cell growth in the protein's absence results in vessel diameter increases. To understand how these changes in vessel geometry emerge from morphological changes of individual endothelial cells, we developed a novel mathematical approach that allows 3D reconstruction and quantification of both dorsal aorta geometry and endothelial cell surface morphology. Based on fluorescently marked endothelial cell contours, we inferred cross-sections of the dorsal aorta that accounted for dorsal flattening of the vessel. By projection of endothelial cell contours onto the estimated cross-sections and subsequent triangulation, we finally reconstructed 3D surfaces of the individual cells. By simultaneously reconstructing vessel cross-sections and cell surfaces, we found in an exploratory analysis that morphology varied between endothelial cells located in different sectors of the dorsal aorta in both wild-type and Endoglin-deficient zebrafish embryos: In wild-types, ventral endothelial cells were smaller and more elongated in flow direction than dorsal endothelial cells at both 48 hpf and 72 hpf. Although dorsal and ventral endothelial cells in Endoglin-deficient embryos had similar sizes at 48 hpf, dorsal endothelial cells were much larger at 72 hpf. In Endoglin-deficient embryos, elongation in flow direction increased between 48 hpf and 72 hpf in ventral endothelial cells but hardly changed in dorsal endothelial cells. Hereby, we provide evidence that dorsal endothelial cells contribute most to the disparate changes in dorsal aorta diameter in wild-type and Endoglin-deficient embryos between 48 hpf and 72 hpf.
Collapse
Affiliation(s)
- Daniel Seeler
- Faculty of Science, Institute of Mathematics, University of Potsdam, Potsdam, Germany
- Faculty of Science, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- PharMetrX Graduate Research Training Program: Pharmacometrics & Computational Disease Modelling, Berlin/Potsdam, Germany
| | - Nastasja Grdseloff
- Faculty of Science, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Claudia Jasmin Rödel
- Faculty of Science, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Charlotte Kloft
- Department of Biology, Chemistry, and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Salim Abdelilah-Seyfried
- Faculty of Science, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Wilhelm Huisinga
- Faculty of Science, Institute of Mathematics, University of Potsdam, Potsdam, Germany
- Faculty of Science, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
3
|
Teranikar T, Nguyen P, Lee J. Biomechanics of cardiac development in zebrafish model. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023. [DOI: 10.1016/j.cobme.2023.100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Baillie JS, Gendernalik A, Garrity DM, Bark D, Quinn TA. The in vivo study of cardiac mechano-electric and mechano-mechanical coupling during heart development in zebrafish. Front Physiol 2023; 14:1086050. [PMID: 37007999 PMCID: PMC10060984 DOI: 10.3389/fphys.2023.1086050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
In the adult heart, acute adaptation of electrical and mechanical activity to changes in mechanical load occurs via feedback processes known as “mechano-electric coupling” and “mechano-mechanical coupling.” Whether this occurs during cardiac development is ill-defined, as acutely altering the heart’s mechanical load while measuring functional responses in traditional experimental models is difficult, as embryogenesis occurs in utero, making the heart inaccessible. These limitations can be overcome with zebrafish, as larvae develop in a dish and are nearly transparent, allowing for in vivo manipulation and measurement of cardiac structure and function. Here we present a novel approach for the in vivo study of mechano-electric and mechano-mechanical coupling in the developing zebrafish heart. This innovative methodology involves acute in vivo atrial dilation (i.e., increased atrial preload) in larval zebrafish by injection of a controlled volume into the venous circulation immediately upstream of the heart, combined with optical measurement of the acute electrical (change in heart rate) and mechanical (change in stroke area) response. In proof-of-concept experiments, we applied our new method to 48 h post-fertilisation zebrafish, which revealed differences between the electrical and mechanical response to atrial dilation. In response to an acute increase in atrial preload there is a large increase in atrial stroke area but no change in heart rate, demonstrating that in contrast to the fully developed heart, during early cardiac development mechano-mechanical coupling alone drives the adaptive increase in atrial output. Overall, in this methodological paper we present our new experimental approach for the study of mechano-electric and mechano-mechanical coupling during cardiac development and demonstrate its potential for understanding the essential adaptation of heart function to acute changes in mechanical load.
Collapse
Affiliation(s)
| | - Alex Gendernalik
- Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | | | - David Bark
- Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, United States
| | - T. Alexander Quinn
- Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada
- Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
- *Correspondence: T. Alexander Quinn,
| |
Collapse
|
5
|
Hernández-Silva D, Alcaraz-Pérez F, Pérez-Sánchez H, Cayuela ML. Virtual screening and zebrafish models in tandem, for drug discovery and development. Expert Opin Drug Discov 2022:1-13. [DOI: 10.1080/17460441.2022.2147503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- David Hernández-Silva
- Telomerase, Cancer and Aging Group (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca (IMIB-Arrixaca), 30120 Murcia, Spain
- Structural Bioinformatics and High-Performance Computing Research Group (BIOHPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Francisca Alcaraz-Pérez
- Telomerase, Cancer and Aging Group (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca (IMIB-Arrixaca), 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| | - Horacio Pérez-Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| | - Maria Luisa Cayuela
- Telomerase, Cancer and Aging Group (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca (IMIB-Arrixaca), 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| |
Collapse
|
6
|
Trinidad F, Rubonal F, Rodriguez de Castro I, Pirzadeh I, Gerrah R, Kheradvar A, Rugonyi S. Effect of Blood Flow on Cardiac Morphogenesis and Formation of Congenital Heart Defects. J Cardiovasc Dev Dis 2022; 9:jcdd9090303. [PMID: 36135448 PMCID: PMC9503889 DOI: 10.3390/jcdd9090303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
Congenital heart disease (CHD) affects about 1 in 100 newborns and its causes are multifactorial. In the embryo, blood flow within the heart and vasculature is essential for proper heart development, with abnormal blood flow leading to CHD. Here, we discuss how blood flow (hemodynamics) affects heart development from embryonic to fetal stages, and how abnormal blood flow solely can lead to CHD. We emphasize studies performed using avian models of heart development, because those models allow for hemodynamic interventions, in vivo imaging, and follow up, while they closely recapitulate heart defects observed in humans. We conclude with recommendations on investigations that must be performed to bridge the gaps in understanding how blood flow alone, or together with other factors, contributes to CHD.
Collapse
Affiliation(s)
- Fernando Trinidad
- Biomedical Engineering Department, University of California, Irvine, CA 92697, USA
| | - Floyd Rubonal
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Ida Pirzadeh
- Biomedical Engineering Department, University of California, Irvine, CA 92697, USA
| | - Rabin Gerrah
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Arash Kheradvar
- Biomedical Engineering Department, University of California, Irvine, CA 92697, USA
| | - Sandra Rugonyi
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
7
|
Editorial: New technological developments and their impact in vascular research. Curr Opin Hematol 2021; 28:177-178. [PMID: 33714968 DOI: 10.1097/moh.0000000000000650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|