1
|
Wang B, Li C, Ming J, Wu L, Fang S, Huang Y, Lin L, Liu H, Kuang J, Zhao C, Huang X, Feng H, Guo J, Yang X, Guo L, Zhang X, Chen J, Liu J, Zhu P, Pei D. The NuRD complex cooperates with SALL4 to orchestrate reprogramming. Nat Commun 2023; 14:2846. [PMID: 37208322 DOI: 10.1038/s41467-023-38543-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
Cell fate decision involves rewiring of the genome, but remains poorly understood at the chromatin level. Here, we report that chromatin remodeling complex NuRD participates in closing open chromatin in the early phase of somatic reprogramming. Sall4, Jdp2, Glis1 and Esrrb can reprogram MEFs to iPSCs efficiently, but only Sall4 is indispensable capable of recruiting endogenous components of NuRD. Yet knocking down NuRD components only reduces reprogramming modestly, in contrast to disrupting the known Sall4-NuRD interaction by mutating or deleting the NuRD interacting motif at its N-terminus that renders Sall4 inept to reprogram. Remarkably, these defects can be partially rescured by grafting NuRD interacting motif onto Jdp2. Further analysis of chromatin accessibility dynamics demonstrates that the Sall4-NuRD axis plays a critical role in closing the open chromatin in the early phase of reprogramming. Among the chromatin loci closed by Sall4-NuRD encode genes resistant to reprogramming. These results identify a previously unrecognized role of NuRD in reprogramming, and may further illuminate chromatin closing as a critical step in cell fate control.
Collapse
Affiliation(s)
- Bo Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chen Li
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin Ming
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Wu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shicai Fang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Joint School of Life Science, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Huang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Joint School of Life Science, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lihui Lin
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Guangzhou Branch of the Supercomputing Center of Chinese Academy of Sciences, Guangzhou, China
| | - He Liu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Guangzhou Branch of the Supercomputing Center of Chinese Academy of Sciences, Guangzhou, China
| | - Chengchen Zhao
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xingnan Huang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Huijian Feng
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Guo
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Xuejie Yang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Liman Guo
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xiaofei Zhang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Jiekai Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Jing Liu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
| |
Collapse
|
2
|
Ibraheem FM, Badawy R, Ayoub MA, Hassan NM, Mostafa MN. SALL4 Gene Expression in Acute Myeloid Leukemia. Asian Pac J Cancer Prev 2019; 20:3121-3127. [PMID: 31653163 PMCID: PMC6982688 DOI: 10.31557/apjcp.2019.20.10.3121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/04/2019] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES SALL4 gene was aberrantly expressed in many leukemia cell lines and primary leukemia cells of acute myeloid leukemia (AML) and precursor B-cell lymphoblastic leukemia/lymphomas. Its expression may be a useful marker to predict the diagnosis and the risk stratification of patients with AML. METHODS This study aimed to characterize the expression pattern of SALL4 gene in adult patients with acute myeloid leukemia. Quantitative Real-time PCR was used to determine the expression level of the gene in peripheral blood of 52 Egyptian adult AML patients and 10 healthy control cases. Our study was done in the National Cancer Institute during the period of time between December 2014 and June 2015. RESULTS The observed data revealed that none of the studied controls expressed SALL4 > 1.0 RQ and there was a highly statistically significant difference between cases and controls regarding SALL4 gene expression where all cases showed higher expression of SALL4 than controls with p value <0.001. CONCLUSION In AML, SALL4 is one of few genes that bridge the self-renewal properties of ESCs, normal HSCs and LSCs. Their expression is easily determined by real time PCR. They may be useful markers to predict prognosis and help to stratify patients into risk adapted groups. Further studies including increasing patient numbers are essential to understand the relations between SALL4 gene expression and its prognostic impact.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Case-Control Studies
- Egypt/epidemiology
- Female
- Follow-Up Studies
- Humans
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Survival Rate
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Young Adult
Collapse
Affiliation(s)
| | | | - Mahmoud Aly Ayoub
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cario, Egypt.
| | | | - Marwa Nabil Mostafa
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cario, Egypt.
| |
Collapse
|
3
|
Yang J. SALL4 as a transcriptional and epigenetic regulator in normal and leukemic hematopoiesis. Biomark Res 2018; 6:1. [PMID: 29308206 PMCID: PMC5751604 DOI: 10.1186/s40364-017-0115-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023] Open
Abstract
In recent years, there has been substantial progress in our knowledge of the molecular pathways by which stem cell factor SALL4 regulates the embryonic stem cell (ESC) properties, developmental events, and human cancers. This review summarizes recent advances in the biology of SALL4 with a focus on its regulatory functions in normal and leukemic hematopoiesis. In the normal hematopoietic system, expression of SALL4 is mainly enriched in the bone marrow hematopoietic stem/progenitor cells (HSCs/HPCs), but is rapidly silenced following lineage differentiation. In hematopoietic malignancies, however, SALL4 expression is abnormally re-activated and linked with deteriorated disease status in patients. Further, SALL4 activation participates in the pathogenesis of tumor initiation and disease progression. Thus, a better understanding of SALL4's biologic functions and mechanisms will facilitate development of advanced targeted anti-leukemia approaches in future.
Collapse
Affiliation(s)
- Jianchang Yang
- Department of Surgery and Medicine, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
4
|
Yang L, Liu L, Gao H, Pinnamaneni JP, Sanagasetti D, Singh VP, Wang K, Mathison M, Zhang Q, Chen F, Mo Q, Rosengart T, Yang J. The stem cell factor SALL4 is an essential transcriptional regulator in mixed lineage leukemia-rearranged leukemogenesis. J Hematol Oncol 2017; 10:159. [PMID: 28974232 PMCID: PMC5627455 DOI: 10.1186/s13045-017-0531-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/27/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The stem cell factor spalt-like transcription factor 4 (SALL4) plays important roles in normal hematopoiesis and also in leukemogenesis. We previously reported that SALL4 exerts its effect by recruiting important epigenetic factors such as DNA methyltransferases DNMT1 and lysine-specific demethylase 1 (LSD1/KDM1A). Both of these proteins are critically involved in mixed lineage leukemia (MLL)-rearranged (MLL-r) leukemia, which has a very poor clinical prognosis. Recently, SALL4 has been further linked to the functions of MLL and its target gene homeobox A9 (HOXA9). However, it remains unclear whether SALL4 is indeed a key player in MLL-r leukemia pathogenesis. METHODS Using a mouse bone marrow retroviral transduction/ transplantation approach combined with tamoxifen-inducible, CreERT2-mediated Sall4 gene deletion, we studied SALL4 functions in leukemic transformation that was induced by MLL-AF9-one of the most common MLL-r oncoproteins found in patients. In addition, the underlying transcriptional and epigenetic mechanisms were explored using chromatin immunoprecipitation (ChIP) sequencing (ChIP-Seq), mRNA microarray, qRT-PCR, histone modification, co-immunoprecipitation (co-IP), cell cycle, and apoptosis assays. The effects of SALL4 loss on normal hematopoiesis in mice were also investigated. RESULTS In vitro and in vivo studies revealed that SALL4 expression is critically required for MLL-AF9-induced leukemic transformation and disease progression in mice. Loss of SALL4 in MLL-AF9-transformed cells induced apoptosis and cell cycle arrest at G1. ChIP-Seq assay identified that Sall4 binds to key MLL-AF9 target genes and important MLL-r or non-MLL-r leukemia-related genes. ChIP-PCR assays indicated that SALL4 affects the levels of the histone modification markers H3K79me2/3 and H3K4me3 at MLL-AF9 target gene promoters by physically interacting with DOT1-like histone H3K79 methyltransferase (DOT1l) and LSD1/KDM1A, and thereby regulates transcript expression. Surprisingly, normal Sall4 f/f /CreERT2 mice treated with tamoxifen or vav-Cre-mediated (hematopoietic-specific) Sall4 -/- mice were healthy and displayed no significant hematopoietic defects. CONCLUSIONS Our findings indicate that SALL4 critically contributes to MLL-AF9-induced leukemia, unraveling the underlying transcriptional and epigenetic mechanisms in this disease and suggesting that selectively targeting the SALL4 pathway may be a promising approach for managing human MLL-r leukemia.
Collapse
Affiliation(s)
- Lina Yang
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Li Liu
- Department of Pathology, Stony Brook University Medicine, Stony Brook, NY, USA
| | - Hong Gao
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Jaya Pratap Pinnamaneni
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Deepthi Sanagasetti
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Vivek P Singh
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Kai Wang
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Megumi Mathison
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Qianzi Zhang
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Fengju Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Qianxing Mo
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Todd Rosengart
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Jianchang Yang
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA. .,Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Barriers to Effective Genome Editing of Haematopoietic Stem Cells. CURRENT STEM CELL REPORTS 2016. [DOI: 10.1007/s40778-016-0032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Xiong J, Todorova D, Su NY, Kim J, Lee PJ, Shen Z, Briggs SP, Xu Y. Stemness factor Sall4 is required for DNA damage response in embryonic stem cells. ACTA ACUST UNITED AC 2015; 208:513-20. [PMID: 25733712 PMCID: PMC4347641 DOI: 10.1083/jcb.201408106] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mouse embryonic stem cells (ESCs) are genetically more stable than somatic cells, thereby preventing the passage of genomic abnormalities to their derivatives including germ cells. The underlying mechanisms, however, remain largely unclear. In this paper, we show that the stemness factor Sall4 is required for activating the critical Ataxia Telangiectasia Mutated (ATM)-dependent cellular responses to DNA double-stranded breaks (DSBs) in mouse ESCs and confer their resistance to DSB-induced cytotoxicity. Sall4 is rapidly mobilized to the sites of DSBs after DNA damage. Furthermore, Sall4 interacts with Rad50 and stabilizes the Mre11-Rad50-Nbs1 complex for the efficient recruitment and activation of ATM. Sall4 also interacts with Baf60a, a member of the SWI/SNF (switch/sucrose nonfermentable) ATP-dependent chromatin-remodeling complex, which is responsible for recruiting Sall4 to the site of DNA DSB damage. Our findings provide novel mechanisms to coordinate stemness of ESCs with DNA damage response, ensuring genomic stability during the expansion of ESCs.
Collapse
Affiliation(s)
- Jianhua Xiong
- Section of Molecular Biology and Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Dilyana Todorova
- Section of Molecular Biology and Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Ning-Yuan Su
- Section of Molecular Biology and Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Jinchul Kim
- Section of Molecular Biology and Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093 Cancer Research Institute, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Pei-Jen Lee
- Section of Molecular Biology and Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Zhouxin Shen
- Section of Molecular Biology and Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Steven P Briggs
- Section of Molecular Biology and Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Yang Xu
- Section of Molecular Biology and Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
7
|
Ratajczak MZ. A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking. Leukemia 2015; 29:776-782. [PMID: 25486871 PMCID: PMC4396402 DOI: 10.1038/leu.2014.346] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 11/21/2014] [Accepted: 12/01/2014] [Indexed: 01/02/2023]
Abstract
This review presents a novel view and working hypothesis about the hierarchy within the adult bone marrow stem cell compartment and the still-intriguing question of whether adult bone marrow contains primitive stem cells from early embryonic development, such as cells derived from the epiblast, migrating primordial germ cells or yolk sac-derived hemangioblasts. It also presents a novel view of the mechanisms that govern stem cell mobilization and homing, with special emphasis on the role of the complement cascade as a trigger for egress of hematopoietic stem cells from bone marrow into blood as well as the emerging role of novel homing factors and priming mechanisms that support stromal-derived factor 1-mediated homing of hematopoietic stem/progenitor cells after transplantation.
Collapse
Affiliation(s)
- M Z Ratajczak
- Stem Cell Biology Program, Stella and Henry Hoenig Endowed Chair, Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
8
|
Liu L, Liu L, Leung LH, Cooney AJ, Chen C, Rosengart TK, Ma Y, Yang J. Knockdown of SALL4 Protein Enhances All-trans Retinoic Acid-induced Cellular Differentiation in Acute Myeloid Leukemia Cells. J Biol Chem 2015; 290:10599-609. [PMID: 25737450 DOI: 10.1074/jbc.m114.634790] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Indexed: 11/06/2022] Open
Abstract
All-trans retinoic acid (ATRA) is a differentiation agent that revolutionized the treatment of acute promyelocytic leukemia. However, it has not been useful for other types of acute myeloid leukemia (AML). Here we explored the effect of SALL4, a stem cell factor, on ATRA-induced AML differentiation in both ATRA-sensitive and ATRA-resistant AML cells. Aberrant SALL4 expression has been found in nearly all human AML cases, whereas, in normal bone marrow and peripheral blood cells, its expression is only restricted to hematopoietic stem/progenitor cells. We reason that, in AMLs, SALL4 activation may prevent cell differentiation and/or protect self-renewal that is seen in normal hematopoietic stem/progenitor cells. Indeed, our studies show that ATRA-mediated myeloid differentiation can be largely blocked by exogenous expression of SALL4, whereas ATRA plus SALL4 knockdown causes significantly increased AML differentiation and cell death. Mechanistic studies indicate that SALL4 directly associates with retinoic acid receptor α and modulates ATRA target gene expression. SALL4 is shown to recruit lysine-specific histone demethylase 1 (LSD1) to target genes and alter the histone methylation status. Furthermore, coinhibition of LSD1 and SALL4 plus ATRA treatment exhibited the strongest anti-AML effect. These findings suggest that SALL4 plays an unfavorable role in ATRA-based regimes, highlighting an important aspect of leukemia therapy.
Collapse
Affiliation(s)
- Li Liu
- From the Departments of Surgery and
| | - Liang Liu
- the Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 519020, China, and
| | - Lai-Han Leung
- the Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 519020, China, and
| | - Austin J Cooney
- the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Changyi Chen
- the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Todd K Rosengart
- the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Yupo Ma
- Pathology, State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Jianchang Yang
- From the Departments of Surgery and Pathology, State University of New York at Stony Brook, Stony Brook, New York 11794,
| |
Collapse
|
9
|
Zhang X, Yuan X, Zhu W, Qian H, Xu W. SALL4: an emerging cancer biomarker and target. Cancer Lett 2014; 357:55-62. [PMID: 25444934 DOI: 10.1016/j.canlet.2014.11.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 12/22/2022]
Abstract
SALL4 is a transcription factor that plays essential roles in maintaining self-renewal and pluripotency of embryonic stem cells (ESCs). In fully differentiated cells, SALL4 expression is down-regulated or silenced. Accumulating evidence suggest that SALL4 expression is reactivated in cancer. Constitutive expression of SALL4 transgene readily induces acute myeloid leukemia (AML) development in mice. Gain- and loss-of-function studies reveal that SALL4 regulates proliferation, apoptosis, invasive migration, chemoresistance, and the maintenance of cancer stem cells (CSCs). SALL4 controls the expression of its downstream genes through both genetic and epigenetic mechanisms. High level of SALL4 expression is detected in cancer patients, which predicts adverse progression and poor outcome. Moreover, targeted inhibition of SALL4 has shown efficient therapeutic effects on cancer. We have summarized the recent advances in the biology of SALL4 with a focus on its role in cancer. Further study of the oncogenic functions of SALL4 and the underlying molecular mechanisms will shed light on cancer biology and provide new implications for cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Xiao Yuan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Wei Zhu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; The Affiliated Hospital, Jiangsu University, 228 Jiefang Road, Zhenjiang, Jiangsu 212001, China.
| |
Collapse
|
10
|
Wu M, Yang F, Ren Z, Jiang Y, Ma Y, Chen Y, Dai W. Identification of the nuclear localization signal of SALL4B, a stem cell transcription factor. Cell Cycle 2014; 13:1456-62. [PMID: 24626181 DOI: 10.4161/cc.28418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
SALL4B plays a critical role in maintaining the pluripotency of embryonic stem cells and hematopoietic stem cells. SALL4B primarily functions as a transcription factor, and, thus, its nuclear localization is paramount to its biological activities. To understand the structural basis by which SALL4B was transported and retained in the nucleus, we made a series of SALL4B constructs with deletions or point mutations. We found that K64R mutation resulted in a random distribution of SALL4B within the cell. An analysis of neighboring amino acid sequences revealed that (64)KRLR (67) in SALL4B matches exactly with the canonical nuclear localization signal (K-K/R-x-K/R). SALL4B fragment (a.a. 50-109) that contained KRLR was sufficient for targeting GFP-tagged SALL4B to the nucleus, whereas K64R mutation led to a random distribution of GFP-SALL4B signal within the cell. We further demonstrated that the nuclear localization was essential for transactivating luciferase reporter gene driven by OCT4 promoter, a known transcriptional target of SALL4B. Therefore, our study identifies the KRLR sequence as a bona fide nuclear localization signal for SALL4B.
Collapse
Affiliation(s)
- Meng Wu
- Biopharmaceutical Research Center; Chinese Academy of Medical Sciences & Peking Union Medical College; Suzhou, China
| | - Feikun Yang
- Department of Environmental Medicine; New York University Langone Medical Center; Tuxedo, NY USA
| | - Zhihua Ren
- Biopharmaceutical Research Center; Chinese Academy of Medical Sciences & Peking Union Medical College; Suzhou, China
| | - Yongping Jiang
- Biopharmaceutical Research Center; Chinese Academy of Medical Sciences & Peking Union Medical College; Suzhou, China
| | - Yupo Ma
- Department of Pathology; The State University of New York at Stony Brook; Stony Brook, NY USA
| | - Yan Chen
- Center for Drug Discovery; Northeastern University; Boston, MA USA and Sahlgrenska Academy; Gothenburg University; Gothenburg, Sweden
| | - Wei Dai
- Department of Environmental Medicine; New York University Langone Medical Center; Tuxedo, NY USA
| |
Collapse
|
11
|
Zeng SS, Yamashita T, Kondo M, Nio K, Hayashi T, Hara Y, Nomura Y, Yoshida M, Hayashi T, Oishi N, Ikeda H, Honda M, Kaneko S. The transcription factor SALL4 regulates stemness of EpCAM-positive hepatocellular carcinoma. J Hepatol 2014; 60:127-34. [PMID: 24012616 DOI: 10.1016/j.jhep.2013.08.024] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Recent evidence suggests that hepatocellular carcinoma can be classified into certain molecular subtypes with distinct prognoses based on the stem/maturational status of the tumor. We investigated the transcription program deregulated in hepatocellular carcinomas with stem cell features. METHODS Gene and protein expression profiles were obtained from 238 (analyzed by microarray), 144 (analyzed by immunohistochemistry), and 61 (analyzed by qRT-PCR) hepatocellular carcinoma cases. Activation/suppression of an identified transcription factor was used to evaluate its role in cell lines. The relationship of the transcription factor and prognosis was statistically examined. RESULTS The transcription factor SALL4, known to regulate stemness in embryonic and hematopoietic stem cells, was found to be activated in a hepatocellular carcinoma subtype with stem cell features. SALL4-positive hepatocellular carcinoma patients were associated with high values of serum alpha fetoprotein, high frequency of hepatitis B virus infection, and poor prognosis after surgery compared with SALL4-negative patients. Activation of SALL4 enhanced spheroid formation and invasion capacities, key characteristics of cancer stem cells, and up-regulated the hepatic stem cell markers KRT19, EPCAM, and CD44 in cell lines. Knockdown of SALL4 resulted in the down-regulation of these stem cell markers, together with attenuation of the invasion capacity. The SALL4 expression status was associated with histone deacetylase activity in cell lines, and the histone deacetylase inhibitor successfully suppressed proliferation of SALL4-positive hepatocellular carcinoma cells. CONCLUSIONS SALL4 is a valuable biomarker and therapeutic target for the diagnosis and treatment of hepatocellular carcinoma with stem cell features.
Collapse
Affiliation(s)
- Sha Sha Zeng
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan; Department of General Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan.
| | - Mitsumasa Kondo
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Takehiro Hayashi
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Yasumasa Hara
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Yoshimoto Nomura
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Mariko Yoshida
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Tomoyuki Hayashi
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Naoki Oishi
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Hiroko Ikeda
- Department of Pathology, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| |
Collapse
|
12
|
Liu L, Souto J, Liao W, Jiang Y, Li Y, Nishinakamura R, Huang S, Rosengart T, Yang VW, Schuster M, Ma Y, Yang J. Histone lysine-specific demethylase 1 (LSD1) protein is involved in Sal-like protein 4 (SALL4)-mediated transcriptional repression in hematopoietic stem cells. J Biol Chem 2013; 288:34719-28. [PMID: 24163373 DOI: 10.1074/jbc.m113.506568] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The stem cell protein SALL4 plays a critical role in hematopoiesis by regulating the cell fate. In primitive hematopoietic precursors, it activates or represses important genes via recruitment of various epigenetic factors such as DNA methyltransferases, and histone deacylases. Here, we demonstrate that LSD1, a histone lysine demethylase, also participates in the trans-repressive effects of SALL4. Based on luciferase assays, the amine oxidase domain of LSD1 is important in suppressing SALL4-mediated reporter transcription. In freshly isolated adult mouse bone marrows, both SALL4 and LSD1 proteins are preferentially expressed in undifferentiated progenitor cells and co-localize in the nuclei. Further sequential chromatin immunoprecipitation assay confirmed that these two factors share the same binding sites at the promoter regions of important hematopoietic regulatory genes including EBF1, GATA1, and TNF. In addition, studies from both gain- and loss-of-function models revealed that SALL4 dynamically controls the binding levels of LSD1, which is accompanied by a reversely changed histone 3 dimethylated lysine 4 at the same promoter regions. Finally, shRNA-mediated knockdown of LSD1 in hematopoietic precursor cells resulted in altered SALL4 downstream gene expression and increased cellular activity. Thus, our data revealed that histone demethylase LSD1 may negatively regulate SALL4-mediated transcription, and the dynamic regulation of SALL4-associated epigenetic factors cooperatively modulates early hematopoietic precursor proliferation.
Collapse
Affiliation(s)
- Li Liu
- From the Departments of Surgery
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Stem cell factor SALL4, a potential prognostic marker for myelodysplastic syndromes. J Hematol Oncol 2013; 6:73. [PMID: 24283704 PMCID: PMC3856454 DOI: 10.1186/1756-8722-6-73] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/23/2013] [Indexed: 12/16/2022] Open
Abstract
Background Myelodysplastic syndromes (MDS) are a group of heterogeneous diseases with variable clinical course. Predicting disease progression is difficult due to lack of specific molecular marker(s). SALL4 plays important roles in normal hematopoiesis and leukemogenesis. SALL4 transgenic mice develop MDS prior to acute myeloid leukemia (AML) transformation. However, the role of SALL4 in human MDS has not been extensively investigated. In this study, we evaluate the diagnostic/prognostic value of SALL4 in MDS by examining its expression levels in a cohort of MDS patients. Methods Fifty-five newly diagnosed MDS, twenty MDS-AML, and sixteen post-treatment MDS patients were selected for our study along with ten healthy donors. Results We demonstrated that SALL4 was over-expressed in MDS patients and proportionally increased in MDS patients with high grade/IPSS scores. This expression pattern was similar to that of Bmi-1, an important marker in predicting MDS/AML progression. In addition, the level of SALL4 was positively correlated with increased blast counts, high-risk keryotypes and increased significantly in MDS-AML transformation. Furthermore, higher level of SALL4 expression was associated with worse survival rates and SALL4 level decreased following effective therapy. Conclusions To the best of our knowledge, this is the largest series and the first to report the expression pattern of SALL4 in detail in various subtypes of MDS in comparison to that of Bmi-1. We conclude that SALL4 is a potential molecular marker in predicting the prognosis of MDS.
Collapse
|
14
|
Virant-Klun I, Stimpfel M, Cvjeticanin B, Vrtacnik-Bokal E, Skutella T. Small SSEA-4-positive cells from human ovarian cell cultures: related to embryonic stem cells and germinal lineage? J Ovarian Res 2013; 6:24. [PMID: 23570331 PMCID: PMC3660272 DOI: 10.1186/1757-2215-6-24] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/24/2013] [Indexed: 01/06/2023] Open
Abstract
Background It has already been found that very small embyronic-like stem cells (VSELs) are present in adult human tissues and organs. The aim of this study was to find if there exists any similar population of cells in cell cultures of reproductive tissues and embryonic stem cells, and if these cells have any relation to pluripotency and germinal lineage. Methods and results Here we report that a population of small SSEA-4-positive cells with diameters of up to 4 μm was isolated by fluorescence-activated cell sorting (FACS) from the human ovarian cell cultures after enzymatic degradation of adult cortex tissues. These small cells – putative ovarian stem cells – were also observed during cell culturing of up to 6 months and more. In general, small putative ovarian stem cells, isolated by FACS, showed a relatively low gene expression profile when compared to human embryonic stem cells (hESCs) and human adult fibroblasts; this may reflect the quiescent state of these cells. In spite of that, small putative ovarian stem cells expressed several genes related to primordial germ cells (PGCs), pluripotency and germinal lineage, including VASA. The PGC-related gene PRDM1 was strongly expressed in small putative ovarian stem cells; in both hESCs and fibroblasts it was significantly down-regulated. In addition, putative ovarian stem cells expressed other PGC-related genes, such as PRDM14 and DPPA3. Most of the pluripotency and germinal lineage-related genes were up-regulated in hESCs (except VASA). When compared to fibroblasts, there were several pluripotency-related genes, which were up-regulated in small putative ovarian stem cells. Similar populations of small cells were also isolated by FACS from human testicular and hESC cultures. Conclusions Our results confirm the potential embryonic-like character of small putative stem cells isolated from human adult ovaries and their possible relation to germinal lineage.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Slajmerjeva 3, Ljubljana, 1000, Republic of Slovenia
| | - Martin Stimpfel
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Slajmerjeva 3, Ljubljana, 1000, Republic of Slovenia
| | - Branko Cvjeticanin
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Slajmerjeva 3, Ljubljana, 1000, Republic of Slovenia
| | - Eda Vrtacnik-Bokal
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Slajmerjeva 3, Ljubljana, 1000, Republic of Slovenia
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, Heidelberg, 69120, Germany
| |
Collapse
|