1
|
Wang R, Khan MSA, Mukherjee K, Ghanem M, Xiao C. Glucose-dependent insulinotropic polypeptide stimulates post-absorptive lipid secretion in the intestine. Front Physiol 2025; 16:1549392. [PMID: 40255636 PMCID: PMC12006050 DOI: 10.3389/fphys.2025.1549392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
It is increasingly recognized that the intestine can retain a portion of dietary fats for secretion during the post-absorptive state, which has strong implications in metabolic diseases. The regulatory mechanisms of gut lipid storage and release are not well defined. Previous studies showed that the intestine releases locally stored fats in response to several stimulatory cues, such as glucose delivered into the intestinal lumen. It remains unknown how the intestine responds to nutrient signals in this phenomenon. Here we tested the effects of intravenous glucose delivery on intestinal lipid output during the post-absorptive state in mesenteric lymph duct cannulated rats. Compared with intraduodenal glucose delivery, intravenous glucose did not stimulate intestinal lipid output. Intraduodenal glucose was also associated with increases in blood levels of metabolic hormones, among which glucose-dependent insulinotropic peptide (GIP) levels were significantly higher at timepoints corresponding to increased lipid output than in intravenous glucose. Intraperitoneal GIP administration per se robustly stimulated intestinal lipid output. These results support a mechanism that involves glucose sensing at the apical side of the enterocytes and GIP as a potent stimulus for the release of lipid storage from the intestine.
Collapse
Affiliation(s)
| | | | | | | | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Syed-Abdul MM, Tian L, Samuel T, Wong A, Hong YK, Dacosta RS, Lewis GF. Glucagon-Like-Peptide-2 Stimulates Lacteal Contractility and Enhances Chylomicron Transport in the Presence of an Intact Enteric Nervous System. GASTRO HEP ADVANCES 2024; 3:954-964. [PMID: 39286622 PMCID: PMC11403421 DOI: 10.1016/j.gastha.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/24/2024] [Indexed: 09/19/2024]
Abstract
Background and Aims Secretion and transport of intestinal chylomicrons (CMs) via lymphatics to the blood circulation is stimulated primarily by fat ingestion, whereas several other factors have also been shown to play important roles in regulating CM secretion rate. Among these factors, active regulation of lymphatic pumping has not been appreciated to date. The gut peptide and intestinal growth factor glucagon-like peptide-2 (GLP-2) has emerged as a robust enhancer of intestinal lipid mobilization and secretion. The present study aims to elucidate GLP-2's impact on lacteal contractility and assess enteric nervous system (ENS) involvement in GLP-2-induced effects on lipid mobilization. Methods Using intravital imaging of a prospero-related homeobox 1-enhanced green fluorescent protein rat model, we assessed GLP-2's effect on lacteal contractility, in the presence and absence of the ENS inhibitor mecamylamine (MEC). Concurrently, to explore the physiological relevance, we examined GLP-2's impact on lymph flow and triglyceride (TG) output in vivo in a rat lymph fistula model. Results GLP-2 significantly increased lacteal contractility, and this effect was inhibited by MEC. In the rat lymph fistula model, GLP-2 increased lymph flow, lymph volume, cumulative lymph volume, and TG output while reducing lymph TG concentration. MEC administration blocked these effects of GLP-2. Peak enhancement of lacteal contractility and enhancement of lymph flow in vivo occurred simultaneously with maximal effect at 15-20 minutes post GLP-2 administration, suggesting that GLP-2 enhances lipid transport by stimulating lymphatic contractility. Conclusion For the first time, through imaging and concurrent rat lymphatic fistula studies, we demonstrated active regulation of lymphatic contractility as a key determinant of CM secretion and that intact ENS was required to observe this effect.
Collapse
Affiliation(s)
- Majid Mufaqam Syed-Abdul
- Division of Endocrinology, Department of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Lili Tian
- Division of Endocrinology, Department of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Timothy Samuel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Alex Wong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Young-Kwon Hong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ralph S Dacosta
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gary F Lewis
- Division of Endocrinology, Department of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Lewis GF, Mulvihill EE. The Complexities of Intestinal Lipoprotein Production in Insulin Resistance and Diabetes: Revisiting a 2010 Diabetes Classic by Pavlic et al. Diabetes 2024; 73:335-337. [PMID: 38377446 DOI: 10.2337/dbi23-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/22/2024]
Affiliation(s)
- Gary F Lewis
- Department of Medicine and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Mukherjee K, Xiao C. GLP-2 regulation of intestinal lipid handling. Front Physiol 2024; 15:1358625. [PMID: 38426205 PMCID: PMC10902918 DOI: 10.3389/fphys.2024.1358625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Lipid handling in the intestine is important for maintaining energy homeostasis and overall health. Mishandling of lipids in the intestine contributes to dyslipidemia and atherosclerotic cardiovascular diseases. Despite advances in this field over the past few decades, significant gaps remain. The gut hormone glucagon-like peptide-2 (GLP-2) has been shown to play pleotropic roles in the regulation of lipid handling in the intestine. Of note, GLP-2 exhibits unique actions on post-prandial lipid absorption and post-absorptive release of intestinally stored lipids. This review aims to summarize current knowledge in how GLP-2 regulates lipid processing in the intestine. Elucidating the mechanisms of GLP-2 regulation of intestinal lipid handling not only improves our understanding of GLP-2 biology, but also provides insights into how lipids are processed in the intestine, which offers opportunities for developing novel strategies towards prevention and treatment of dyslipidemia and atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Syed-Abdul MM, Stahel P, Zembroski A, Tian L, Xiao C, Nahmias A, Bookman I, Buhman KK, Lewis GF. Glucagon-like peptide-2 acutely enhances chylomicron secretion in humans without mobilizing cytoplasmic lipid droplets. J Clin Endocrinol Metab 2022; 108:1084-1092. [PMID: 36458872 DOI: 10.1210/clinem/dgac690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
CONTEXT A portion of ingested fats are retained in the intestine for many hours before they are mobilized and secreted in chylomicron (CM) particles. Factors like glucagon-like peptide-2 (GLP-2) and glucose can mobilize these stored intestinal lipids and enhance CM secretion. We have recently demonstrated in rodents that GLP-2 acutely enhances CM secretion by mechanisms that do not involve the canonical CM synthetic assembly and secretory pathways. OBJECTIVE To further investigate the mechanism of GLP-2's potent intestinal lipid mobilizing effect, we examined intracellular cytoplasmic lipid droplets (CLDs) in intestinal biopsies of humans administered GLP-2 or placebo. DESIGN, SETTING, PATIENTS, AND INTERVENTIONS A single dose of placebo or GLP-2 was administered subcutaneously five hours after ingesting a high-fat bolus. In one subset of participants, plasma samples were collected to quantify lipid and lipoprotein concentrations for 3 hours post-placebo or GLP-2. In another subset, a duodenal biopsy was obtained one-hour post-placebo or GLP-2 administration for transmission electron microscopy (TEM) and proteomic analysis. RESULTS GLP-2 significantly increased plasma-TG by 46% (P = 0.009), mainly in CM-sized particles (CM-TG) by 133% (P = 0.003), without reducing duodenal CLD size or number. Several proteins of interest were identified that require further investigation to elucidate their potential role in GLP-2-mediated CM secretion. CONCLUSIONS Unlike glucose that mobilizes enterocyte CLDs and enhances CM secretion, GLP-2 acutely increased plasma CMs without significant mobilization of CLDs, supporting our previous findings that GLP-2 does not act directly on enterocytes to enhance CM secretion and most likely mobilizes secreted CMs in the lamina propria and lymphatics.
Collapse
Affiliation(s)
- Majid Mufaqam Syed-Abdul
- Departments of Medicine and Physiology and Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, CANADA
| | - Priska Stahel
- Departments of Medicine and Physiology and Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, CANADA
| | - Alyssa Zembroski
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Lili Tian
- Departments of Medicine and Physiology and Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, CANADA
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, CANADA
| | - Avital Nahmias
- Maccabi Healthcare Services, Endocrinology Division, Tel Aviv, Israel
| | - Ian Bookman
- Kensington Screening Clinic, Department of Medicine, University of Toronto, Toronto, Ontario, CANADA
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Gary F Lewis
- Departments of Medicine and Physiology and Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, CANADA
| |
Collapse
|
6
|
Tian L, Syed-Abdul MM, Stahel P, Lewis GF. Enteral glucose, absorbed and metabolized, potently enhances mesenteric lymph flow in chow- and high-fat-fed rats. Am J Physiol Gastrointest Liver Physiol 2022; 323:G331-G340. [PMID: 35916412 DOI: 10.1152/ajpgi.00095.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A portion of absorbed dietary triglycerides (TG) is retained in the intestine after the postprandial period, within intracellular and extracellular compartments. This pool of TG can be mobilized in response to several stimuli, including oral glucose. The objective of this study was to determine whether oral glucose must be absorbed and metabolized to mobilize TG in rats and whether high-fat feeding, a model of insulin resistance, alters the lipid mobilization response to glucose. Lymph flow, TG concentration, TG output, and apolipoprotein B48 (apoB48) concentration and output were assessed after an intraduodenal lipid bolus in rats exposed to the following intraduodenal administrations 5 h later: saline (placebo), glucose, 2-deoxyglucose (2-DG, absorbed but not metabolized), or glucose + phlorizin (intestinal glucose absorption inhibitor). Glucose alone, but not 2-DG or glucose + phlorizin treatments, stimulated lymph flow, TG output, and apoB48 output compared with placebo. The effects of glucose in high-fat-fed rats were similar to those in chow-fed rats. In conclusion, glucose must be both absorbed and metabolized to enhance lymph flow and intestinal lipid mobilization. This effect is qualitatively and quantitatively similar in high-fat- and chow-fed rats. The precise signaling mechanism whereby enteral glucose enhances lymph flow and mobilizes enteral lipid remains to be determined.NEW & NOTEWORTHY Glucose potently enhances mesenteric lymph flow in chow- and high-fat-fed rats. The magnitude of glucose effect on lymph flow is no different in chow- and high-fat-fed rats. Glucose must be absorbed and metabolized to enhance lymph flow and mobilize intestinal lipid.
Collapse
Affiliation(s)
- Lili Tian
- Division of Endocrinology, Department of Medicine and Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Majid Mufaqam Syed-Abdul
- Division of Endocrinology, Department of Medicine and Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Priska Stahel
- Division of Endocrinology, Department of Medicine and Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gary F Lewis
- Division of Endocrinology, Department of Medicine and Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|