1
|
Mi H, Hu F, Gebeyew K, Cheng Y, Du R, Gao M, He Z, Tan Z. Genome wide transcriptome analysis provides bases on hepatic lipid metabolism disorder affected by increased dietary grain ratio in fattening lambs. BMC Genomics 2023; 24:364. [PMID: 37386405 DOI: 10.1186/s12864-023-09465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The liver is a principal metabolic organ and has a major role in regulating lipid metabolism. With the development of rapidly fattening livestock in the modern breeding industry, the incidence of hepatic steatosis and accumulation in animals was significantly increased. However, the molecular mechanisms responsible for hepatic lipid metabolic disturbances in a high concentrate diet remain unclear. The objective of this study was to evaluate the effects of increasing concentrate level in a fattening lamb diet on biochemical indices, hepatic triglycerides (TG) concentration, and hepatic transcriptomic profiles. In the present study, 42 weaned lambs (about 3 ± 0.3 months old) were randomly assigned to the GN60 group (60% concentrate of dry matter, GN60, n = 21) or GN70 group (70% concentrate of dry matter, n = 21) for a 3-months feeding trial. RESULTS No difference was observed in the growth performance or plasma biochemical parameters between the GN60 group and the GN70 group. The hepatic TG concentration was higher in the GN70 group than GN60 group (P < 0.05). Hepatic transcriptomic analysis showed that there were 290 differentially expressed genes identified between GN60 and GN70 groups, with 125 genes up-regulated and 165 genes down-regulated in the GN70 group. The enriched Gene Ontology (GO) items and KEGG pathways and protein-protein interaction (PPI) network of differentially expressed genes (DEGs) revealed that the majority of enriched pathways were related to lipid metabolism. Further analysis revealed that the fatty acid synthesis was up-regulated, while fatty acid transport, oxidation, and TG degradation were down-regulated in the GN70 group when compared with the GN60 group. CONCLUSIONS These results indicated that GN70 induced excess lipid deposition in the liver of lambs during the fattening period, with high synthesis rates and low degradation rates of TG. The identified mechanisms may help understand hepatic metabolism in lambs with a high concentrate diet and provide insight into decreasing the risk of liver metabolism disorder in animals.
Collapse
Affiliation(s)
- Hui Mi
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Hu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Cheng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruiping Du
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, 010031, China
| | - Min Gao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, 010031, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Quispe R, Hendrani AD, Baradaran-Noveiry B, Martin SS, Brown E, Kulkarni KR, Banach M, Toth PP, Brinton EA, Jones SR, Joshi PH. Characterization of lipoprotein profiles in patients with hypertriglyceridemic Fredrickson-Levy and Lees dyslipidemia phenotypes: the Very Large Database of Lipids Studies 6 and 7. Arch Med Sci 2019; 15:1195-1202. [PMID: 31572464 PMCID: PMC6764300 DOI: 10.5114/aoms.2019.87207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION The association between triglycerides (TG) and cardiovascular diseases is complex. The classification of hypertriglyceridemic (HTG) phenotypes proposed by Fredrickson, Levy and Lees (FLL) helps inform treatment strategies. We aimed to describe levels of several lipoprotein variables from individuals with HTG FLL phenotypes from the Very Large Database of Lipids. MATERIAL AND METHODS We included fasting samples from 979,539 individuals from a contemporary large study population of US adults. Lipids were directly measured by density-gradient ultracentrifugation using the Vertical Auto Profile test while TG levels were measured in whole plasma using the Abbott ARCHITECT C-8000 system. Hyperchylomicronemic (Hyper-CM) and non-chylomicronemic (non-CM) phenotypes were defined using computationally derived models. Individuals with FLL type IIa phenotype were excluded. Distributions of lipid variables were compared using medians and Kruskal-Wallis test. RESULTS A total of 11.9% (n = 116,925) of individuals met criteria for HTG FLL phenotypes. Those with hyper-CM phenotypes (n = 5, < 0.1% of population) had two-fold higher TG levels compared with non-chylomicronemic (non-CM) individuals (11.9% of population) (p < 0.001). Type IIb individuals had the highest non-HDL-C levels (median 242 mg/dl). Cholesterol in large VLDL1+2 particles was higher than in small VLDL3 particles in all phenotypes except FLL type III. Hyper-CM phenotypes had significantly lower HDL-C levels but greater HDL2/HDL3-C ratio compared to non-CM phenotypes. Cholesterol content of the lipoprotein (a) peak was significantly higher in the hyper-CM groups compared to non-CM phenotypes (p < 0.0001). CONCLUSIONS This observational hypothesis-generating study provides insight into the complexity of lipid metabolism in HTG phenotypes, including less traditional lipid measures such as LDL density, HDL subclasses and Lp(a)-C.
Collapse
Affiliation(s)
- Renato Quispe
- Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
- Department of Medicine, Albert Einstein College of Medicine, Jacobi Medical Center, Bronx, NY, USA
| | - Aditya D. Hendrani
- Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
- Louisiana State University Health Science Center-Shreveport, LA, USA
| | | | - Seth S. Martin
- Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, MD, USA
| | - Emily Brown
- Center for Inherited Heart Disease, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| | - Peter P. Toth
- Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
- Department of Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
- Department of Family and Community Medicine, University of Illinois College of Medicine, Peoria, IL, USA
| | | | - Steven R. Jones
- Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Parag H. Joshi
- Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
3
|
Metabolic profiling study of yang deficiency syndrome in hepatocellular carcinoma by h1 NMR and pattern recognition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:843048. [PMID: 23056143 PMCID: PMC3463959 DOI: 10.1155/2012/843048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/16/2012] [Accepted: 08/27/2012] [Indexed: 11/24/2022]
Abstract
This study proposes a 1H NMR-based metabonomic approach to explore the biochemical characteristics of Yang deficiency syndrome in hepatocellular carcinoma (HCC) based on serum metabolic profiling. Serum samples from 21 cases of Yang deficiency syndrome HCC patients (YDS-HCC) and 21 cases of non-Yang deficiency syndrome HCC patients (NYDS-HCC) were analyzed using 1H NMR spectroscopy and partial least squares discriminant analysis (PLS-DA) was applied to visualize the variation patterns in metabolic profiling of sera from different groups. The differential metabolites were identified and the biochemical characteristics were analyzed. We found that the intensities of six metabolites (LDL/VLDL, isoleucine, lactate, lipids, choline, and glucose/sugars) in serum of Yang deficiency syndrome patients were lower than those of non-Yang deficiency syndrome patients. It implies that multiple metabolisms, mainly including lipid, amino acid, and energy metabolisms, are unbalanced or weakened in Yang deficiency syndrome patients with HCC. The decreased intensities of metabolites including LDL/VLDL, isoleucine, lactate, lipids, choline, and glucose/sugars in serum may be the distinctive metabolic variations of Yang deficiency syndrome patients with HCC. And these metabolites may be potential biomarkers for diagnosis of Yang deficiency syndrome in HCC.
Collapse
|