1
|
Ahmadabad LE, Kalantari FS, Liu H, Hasan A, Gamasaee NA, Edis Z, Attar F, Ale-Ebrahim M, Rouhollah F, Babadaei MMN, Sharifi M, Shahpasand K, Akhtari K, Falahati M, Cai Y. Hydrothermal method-based synthesized tin oxide nanoparticles: Albumin binding and antiproliferative activity against K562 cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111649. [PMID: 33321685 DOI: 10.1016/j.msec.2020.111649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/18/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
The interaction of nanoparticles with protein and cells may provide important information regarding their biomedical implementations. Herein, after synthesis of tin oxide (SnO2) nanoparticles by hydrothermal method, their interaction with human serum albumin (HSA) was evaluated by multispectroscopic and molecular docking (MD) approaches. Furthermore, the selective antiproliferative impact of SnO2 nanoparticles against leukemia K562 cells was assessed by different cellular assays, whereas lymphocytes were used as control cells. TEM, DLS, zeta potential and XRD techniques showed that crystalline SnO2 nanoparticles have a size of less than 50 nm with a good colloidal stability. Fluorescence and CD spectroscopy analysis indicated that the HSA undergoes some slight conformational changes after interaction with SnO2 nanoparticles, whereas the secondary structure of HSA remains intact. Moreover, MD outcomes revealed that the charged residues of HSA preferentially bind to SnO2 nanoclusters in the binding pocket. Antiproliferative examinations displayed that SnO2 nanoparticles can selectively cause the mortality of K562 cells through induction of cell membrane leakage, activation of caspase-9, -8, -3, down regulation of Bcl-2 mRNA, the elevation of ROS level, S phase arrest, and apoptosis. In conclusion, this data may indicate that SnO2 nanoparticles can be used as promising particles to be integrated into therapeutic platforms.
Collapse
Affiliation(s)
- Leila Ebrahimi Ahmadabad
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Firoozeh Samia Kalantari
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hui Liu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Centre, Qatar University, Doha 2713, Qatar.
| | - Niusha Abbasi Gamasaee
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Farnoosh Attar
- Department of Food Toxicology, Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), Karaj, Iran
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rouhollah
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Koorosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China; Cancer Institute of Jinan University, Guangzhou, Guangdong 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
2
|
Zheng Y, Ouyang WQ, Wei YP, Syed SF, Hao CS, Wang BZ, Shang YH. Effects of Carbopol ® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study. Int J Nanomedicine 2016; 11:5971-5987. [PMID: 27877042 PMCID: PMC5108606 DOI: 10.2147/ijn.s119286] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nanoemulsions (NEs) are used as transdermal drug delivery systems for systematic therapeutic purposes. We hypothesized that the skin permeation profile of an NE could be modulated by incorporating it into a hydrogel containing differing proportions of thickening agent. The objectives of this study were as follows: 1) to determine the stability and skin irritability of NE gels (NGs) containing 1%, 2%, and 3% (w/w) Carbopol® 934 (CP934) (termed NG1, NG2, and NG3, respectively); 2) to compare the skin permeation profiles and drug deposition patterns of the NGs; and 3) to visualize the drug delivery routes of the NGs. Terbinafine and citral were incorporated into the NGs as model drugs. Ex vivo skin permeation tests indicated that the percutaneous flux rates of terbinafine decreased in the order NE (215 μg/cm2) > NG1 (213 μg/cm2) > NG2 (123 μg/cm2) > NG3 (74.3 μg/cm2). The flux rates of citral decreased in the order NE (1,026 μg/cm2) > NG1 (1,021 μg/cm2) > NG2 (541 μg/cm2) > NG3 (353 μg/cm2). The NGs accumulated greater amounts of the drugs in the stratum corneum and less in the epidermis/dermis than did the NE (P<0.05) over a period of 12 h. Laser scanning confocal microscopy indicated that the NGs altered the main drug delivery routes from skin appendages to intercellular paths. Histological images suggested that perturbations to the skin structure, specifically the size of the epidermal intercellular spaces and the separation distance of dermal collagen bundles, could be significantly minimized by increasing the proportion of CP934. These results suggest that adjustments of the CP934 proportions can be used to modulate the skin permeation profiles of NGs for specific therapeutic purposes.
Collapse
Affiliation(s)
- Yin Zheng
- Department of Basic Veterinary Sciences, College of Veterinary Medicine
| | - Wu-Qing Ouyang
- Department of Basic Veterinary Sciences, College of Veterinary Medicine
| | - Yun-Peng Wei
- Department of Basic Veterinary Sciences, College of Veterinary Medicine
| | - Shahid Faraz Syed
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi; Faculty of Veterinary and Animal Sciences, Lasbella University of Agriculture Water and Marine Sciences, Uthal Baluchistan, Pakistan
| | - Chao-Shuang Hao
- Department of Basic Veterinary Sciences, College of Veterinary Medicine
| | - Bo-Zhen Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang
| | - Yan-Hong Shang
- Department of Basic Veterinary Sciences, College of Veterinary Medicine; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Ye H, Tong J, Liu J, Lin W, Zhang C, Chen K, Zhao J, Zhu W. Combination of gemcitabine-containing magnetoliposome and oxaliplatin-containing magnetoliposome in breast cancer treatment: A possible mechanism with potential for clinical application. Oncotarget 2016; 7:43762-43778. [PMID: 27248325 PMCID: PMC5190058 DOI: 10.18632/oncotarget.9671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is a major global health problem with high incidence and case fatality rates. The use of magnetoliposomes has been suggested as an effective therapeutic approach because of their good specificity for cancers. In this study, we developed two novel magnetoliposomes, namely, Gemcitabine-containing magnetoliposome (GML) and Oxaliplatin-containing magnetoliposome (OML). These magnetoliposomes were combined (CGOML) was used to treat breast cancer under an external magnetic field. Biosafety test results showed that GML and OML were biologically safe to blood cells and did not adversely affect the behavior of mice. Pharmacokinetic and tissue distribution studies indicated that both magnetoliposomes exhibited stable structures and persisted at the target area under an external magnetic field. Cell and animal experiments revealed that CGOML can markedly suppress the growth of MCF-7 cells, and only the CGOML group can minimize the tumor size among all the groups. Finally, CGOML can significantly inhibit MCF-7cell growth both in vitro and vivo by activating the apoptotic signaling pathway of MCF-7 cells.
Collapse
Affiliation(s)
- Hui Ye
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiansong Tong
- Department of Cellular and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiangyi Liu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenman Lin
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chengshou Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kai Chen
- School of Renji, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jie Zhao
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenjing Zhu
- School of Renji, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
4
|
Carvalho FA, Freitas T, Santos NC. Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy. ADVANCES IN PHYSIOLOGY EDUCATION 2015; 39:360-366. [PMID: 26628660 DOI: 10.1152/advan.00119.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic force microscope by performing AFM scanning images of human blood cells and force spectroscopy measurements of the fibrinogen-platelet interaction. Since the beginning of this course, in 2008, the overall rating by the students was 4.7 (out of 5), meaning a good to excellent evaluation. Students were very enthusiastic and produced high-quality AFM images and force spectroscopy data. The implementation of the hands-on AFM course was a success, giving to the students the opportunity of contact with a technique that has a wide variety of applications on the nanomedicine field. In the near future, nanomedicine will have remarkable implications in medicine regarding the definition, diagnosis, and treatment of different diseases. AFM enables students to observe single molecule interactions, enabling the understanding of molecular mechanisms of different physiological and pathological processes at the nanoscale level. Therefore, the introduction of nanomedicine courses in bioscience and medical school curricula is essential.
Collapse
Affiliation(s)
- Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa Freitas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Ye H, Tong J, Wu J, Xu X, Wu S, Tan B, Shi M, Wang J, Zhao W, Jiang H, Jin S. Preclinical evaluation of recombinant human IFNα2b-containing magnetoliposomes for treating hepatocellular carcinoma. Int J Nanomedicine 2014; 9:4533-50. [PMID: 25288882 PMCID: PMC4184408 DOI: 10.2147/ijn.s67228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Magnetoliposomes are phospholipid vesicles encapsulating magnetic nanoparticles that can be used to encapsulate therapeutic drugs for delivery into specific organs. Herein, we developed magnetoliposomes containing recombinant human IFNα2b, designated as MIL, and evaluated this combination's biological safety and therapeutic effect on both cellular and animal hepatocellular carcinoma models. Our data showed that MIL neither hemolyzed erythrocytes nor affected platelet-aggregation rates in blood. Nitroblue tetrazolium-reducing testing showed that MIL did not change the absolute numbers or phagocytic activities of leukocytes. Acute-toxicity testing also showed that MIL had no devastating effect on mice behaviors. All the results indicated that the nanoparticles could be a safe biomaterial. Pharmacokinetic analysis and tissue-distribution studies showed that MIL maintained stable and sustained drug concentrations in target organs under a magnetic field, helped to increase bioavailability, and reduced administration time. MIL also dramatically inhibited the growth of hepatoma cells. Targeting of MIL in the livers of nude mice bearing human hepatocellular carcinoma showed that MIL significantly reduced the tumor size to 38% of that of the control group. Further studies proved that growth inhibition of cells or tumors was due to apoptosis-signaling pathway activation by human IFNα2b.
Collapse
Affiliation(s)
- Hui Ye
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Department of Cellular and Molecular Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Jiansong Tong
- Department of Cellular and Molecular Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Jianzhang Wu
- Pharmaceutical College, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xia Xu
- School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shenjie Wu
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Botao Tan
- School of Medicine, Lishui University, Lishui, People’s Republic of China
| | - Mengjing Shi
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jianguang Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Weibo Zhao
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Heng Jiang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Sha Jin
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People’s Republic of China
| |
Collapse
|
6
|
Rizvi SB, Rouhi S, Taniguchi S, Yang SY, Green M, Keshtgar M, Seifalian AM. Near-infrared quantum dots for HER2 localization and imaging of cancer cells. Int J Nanomedicine 2014; 9:1323-37. [PMID: 24648731 PMCID: PMC3956736 DOI: 10.2147/ijn.s51535] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu) is overexpressed in 25%–30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Methods Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing), and MCF7 (HER2-underexpressing). Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. Results In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 μg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells. Conclusion Near-infrared-emitting quantum dot bioconjugates can be used for rapid localization of HER2 receptors and can potentially be used for targeted therapy as well as image-guided surgery.
Collapse
Affiliation(s)
- Sarwat B Rizvi
- UCL Centre for Nanotechnology and Regenerative Medicine, University College London, London, UK
| | - Sepideh Rouhi
- UCL Centre for Nanotechnology and Regenerative Medicine, University College London, London, UK
| | | | - Shi Yu Yang
- UCL Centre for Nanotechnology and Regenerative Medicine, University College London, London, UK
| | - Mark Green
- Department of Physics, King's College London, London, UK
| | - Mo Keshtgar
- UCL Centre for Nanotechnology and Regenerative Medicine, University College London, London, UK ; Royal Free London NHS Foundation Trust Hospital, London, UK
| | - Alexander M Seifalian
- UCL Centre for Nanotechnology and Regenerative Medicine, University College London, London, UK ; Royal Free London NHS Foundation Trust Hospital, London, UK
| |
Collapse
|
7
|
Abstract
The synthesis of nanoparticles with desired size and shape is an important area of research in nanotechnology. Use of biological system is an alternative approach to chemical and physical procedures for the synthesis of metal nanoparticles. An efficient environment-friendly approach for the biosynthesis of rapid and stable Gold nanoparticles (AuNPs) using whole cells of Geotrichum candidum is discussed in this paper. The enzymes/proteins present in the microorganism might be responsible for the reduction of metal salts to nanoparticles. Various reaction parameters such as culture age, temperature, pH, metal salt, and cell mass concentrations were optimized. The AuNPs were characterized by UV-visible spectroscopy, dynamic light scattering (DLS), energy dispersive spectroscopy (EDS), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). Nanoparticles were isolated by sonicating the whole cells after treatment with Tween 80. The whole cell mediated process showed the simplistic, feasible, easy to scale up, and low-cost approach for the synthesis of AuNPs.
Collapse
|
8
|
Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 2013; 42:6060-93. [DOI: 10.1039/c3cs35486e] [Citation(s) in RCA: 2267] [Impact Index Per Article: 188.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Benachour H, Bastogne T, Toussaint M, Chemli Y, Sève A, Frochot C, Lux F, Tillement O, Vanderesse R, Barberi-Heyob M. Real-time monitoring of photocytotoxicity in nanoparticles-based photodynamic therapy: a model-based approach. PLoS One 2012; 7:e48617. [PMID: 23144911 PMCID: PMC3492457 DOI: 10.1371/journal.pone.0048617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 09/27/2012] [Indexed: 12/13/2022] Open
Abstract
Nanoparticles are widely suggested as targeted drug-delivery systems. In photodynamic therapy (PDT), the use of multifunctional nanoparticles as photoactivatable drug carriers is a promising approach for improving treatment efficiency and selectivity. However, the conventional cytotoxicity assays are not well adapted to characterize nanoparticles cytotoxic effects and to discriminate early and late cell responses. In this work, we evaluated a real-time label-free cell analysis system as a tool to investigate in vitro cyto- and photocyto-toxicity of nanoparticles-based photosensitizers compared with classical metabolic assays. To do so, we introduced a dynamic approach based on real-time cell impedance monitoring and a mathematical model-based analysis to characterize the measured dynamic cell response. Analysis of real-time cell responses requires indeed new modeling approaches able to describe suited use of dynamic models. In a first step, a multivariate analysis of variance associated with a canonical analysis of the obtained normalized cell index (NCI) values allowed us to identify different relevant time periods following nanoparticles exposure. After light irradiation, we evidenced discriminant profiles of cell index (CI) kinetics in a concentration- and light dose-dependent manner. In a second step, we proposed a full factorial design of experiments associated with a mixed effect kinetic model of the CI time responses. The estimated model parameters led to a new characterization of the dynamic cell responses such as the magnitude and the time constant of the transient phase in response to the photo-induced dynamic effects. These parameters allowed us to characterize totally the in vitro photodynamic response according to nanoparticle-grafted photosensitizer concentration and light dose. They also let us estimate the strength of the synergic photodynamic effect. This dynamic approach based on statistical modeling furnishes new insights for in vitro characterization of nanoparticles-mediated effects on cell proliferation with or without light irradiation.
Collapse
Affiliation(s)
- Hamanou Benachour
- Université de Lorraine, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
- CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
| | - Thierry Bastogne
- Université de Lorraine, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
- CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
- Inria, Biologie, Génétique et Statistiques (BIGS), UMR 7502, Institut Elie Cartan Nancy (IECN), Vandœuvre-lès-Nancy, France
| | - Magali Toussaint
- Université de Lorraine, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
- CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
| | - Yosra Chemli
- Université de Lorraine, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
- CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
| | - Aymeric Sève
- CNRS, Laboratoire des Réactions et Génie des Procédés (LRGP), UPR 3349, Nancy, France
| | - Céline Frochot
- CNRS, Laboratoire des Réactions et Génie des Procédés (LRGP), UPR 3349, Nancy, France
- CNRS, GdR 3049 “Médicaments Photoactivables - Photochimiothérapie (PHOTOMED)”, France
| | - François Lux
- Université Claude Bernard Lyon 1, Laboratoire de Physico-Chimie des Matériaux Luminescents (LPCML), UMR 5620, Villeurbanne, Lyon, France
- CNRS, Laboratoire de Physico-Chimie des Matériaux Luminescents (LPCML), UMR 5620, Villeurbanne, Lyon, France
| | - Olivier Tillement
- Université Claude Bernard Lyon 1, Laboratoire de Physico-Chimie des Matériaux Luminescents (LPCML), UMR 5620, Villeurbanne, Lyon, France
- CNRS, Laboratoire de Physico-Chimie des Matériaux Luminescents (LPCML), UMR 5620, Villeurbanne, Lyon, France
| | - Régis Vanderesse
- Université de Lorraine, Laboratoire de Chimie-Physique Macromoléculaire (LCPM), UMR 7568, Nancy, France
- CNRS, Laboratoire de Chimie-Physique Macromoléculaire (LCPM), UMR 7568, Nancy, France
| | - Muriel Barberi-Heyob
- Université de Lorraine, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
- CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France
- CNRS, GdR 3049 “Médicaments Photoactivables - Photochimiothérapie (PHOTOMED)”, France
- Centre Alexis Vautrin, Centre Régional de Lutte Contre le Cancer (CRLCC), Vandœuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
10
|
Abstract
The advances in science have resulted in the emergence of nanotechnology, which deals with the design and use of tools and devices of size 1-100 nm. The application of nanotechnologies to medicine is thus termed nanomedicine. Significant research has been focused on this new and exciting field and this review article will describe the basics of nanomedicine. This is followed by its experimental and clinical applications in diagnostics, drug therapy and regenerative medicine. Safety issues of in vivo use of nanomaterials are also discussed. In the future, it is foreseen that nanomedicine will facilitate the development of personalized medicine and will have a major impact on the delivery of better healthcare.
Collapse
|
11
|
|
12
|
Crayton SH, Elias DR, Al Zaki A, Cheng Z, Tsourkas A. ICP-MS analysis of lanthanide-doped nanoparticles as a non-radiative, multiplex approach to quantify biodistribution and blood clearance. Biomaterials 2011; 33:1509-19. [PMID: 22100983 DOI: 10.1016/j.biomaterials.2011.10.077] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/27/2011] [Indexed: 01/03/2023]
Abstract
Recent advances in material science and chemistry have led to the development of nanoparticles with diverse physicochemical properties, e.g. size, charge, shape, and surface chemistry. Evaluating which physicochemical properties are best for imaging and therapeutic studies is challenging not only because of the multitude of samples to evaluate, but also because of the large experimental variability associated with in vivo studies (e.g. differences in tumor size, injected dose, subject weight, etc.). To address this issue, we have developed a lanthanide-doped nanoparticle system and analytical method that allows for the quantitative comparison of multiple nanoparticle compositions simultaneously. Specifically, superparamagnetic iron oxide (SPIO) with a range of different sizes and charges were synthesized, each with a unique lanthanide dopant. Following the simultaneous injection of the various SPIO compositions into tumor-bearing mice, inductively coupled plasma mass spectroscopy (ICP-MS) was used to quantitatively and orthogonally assess the concentration of each SPIO composition in serial blood samples and the resected tumor and organs. The method proved generalizable to other nanoparticle platforms, including dendrimers, liposomes, and polymersomes. This approach provides a simple, cost-effective, and non-radiative method to quantitatively compare tumor localization, biodistribution, and blood clearance of more than 10 nanoparticle compositions simultaneously, removing subject-to-subject variability.
Collapse
Affiliation(s)
- Samuel H Crayton
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
13
|
|