1
|
Liao D, Liu C, Chen S, Liu F, Li W, Shangguan D, Shi Y. Recent advances in immune checkpoint inhibitor-induced type 1 diabetes mellitus. Int Immunopharmacol 2023; 122:110414. [PMID: 37390646 DOI: 10.1016/j.intimp.2023.110414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 07/02/2023]
Abstract
As a new group of anticancer drugs, immune checkpoint inhibitors (ICIs) have exhibited favorable antitumor efficacy in numerous malignant tumors. Anti-cytotoxic T lymphocyte associated antigen-4 (CTLA-4), anti-programmed cell death-1 (PD-1) and anti-programmed cell death ligand-1 (PD-L1) are three kinds of ICIs widely used in clinical practice. However, ICI therapy (monotherapy or combination therapy) is always accompanied by a unique toxicity profile known as immune-related adverse events (irAEs) affecting multiple organs. The endocrine glands are common targets of irAEs induced by ICIs, which cause type 1 diabetes mellitus (T1DM) when the pancreas is affected. Although the incidence rate of ICI-induced T1DM is rare, it will always lead to an irreversible impairment of β-cells and be potentially life-threatening. Hence, it is vital for endocrinologists and oncologists to obtain a comprehensive understanding of ICI-induced T1DM and its management. In our present manuscript, we have reviewed the epidemiology, pathology and mechanism, diagnosis, management, and treatments of ICI-induced T1DM.
Collapse
Affiliation(s)
- Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Chaoyi Liu
- Department of Information, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Shanshan Chen
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Fen Liu
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Wei Li
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Dangang Shangguan
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China.
| | - Yingrui Shi
- Department of Radiation Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China.
| |
Collapse
|
2
|
Ernst AU, Bowers DT, Wang LH, Shariati K, Plesser MD, Brown NK, Mehrabyan T, Ma M. Nanotechnology in cell replacement therapies for type 1 diabetes. Adv Drug Deliv Rev 2019; 139:116-138. [PMID: 30716349 PMCID: PMC6677642 DOI: 10.1016/j.addr.2019.01.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Islet transplantation is a promising long-term, compliance-free, complication-preventing treatment for type 1 diabetes. However, islet transplantation is currently limited to a narrow set of patients due to the shortage of donor islets and side effects from immunosuppression. Encapsulating cells in an immunoisolating membrane can allow for their transplantation without the need for immunosuppression. Alternatively, "open" systems may improve islet health and function by allowing vascular ingrowth at clinically attractive sites. Many processes that enable graft success in both approaches occur at the nanoscale level-in this review we thus consider nanotechnology in cell replacement therapies for type 1 diabetes. A variety of biomaterial-based strategies at the nanometer range have emerged to promote immune-isolation or modulation, proangiogenic, or insulinotropic effects. Additionally, coating islets with nano-thin polymer films has burgeoned as an islet protection modality. Materials approaches that utilize nanoscale features manipulate biology at the molecular scale, offering unique solutions to the enduring challenges of islet transplantation.
Collapse
Affiliation(s)
- Alexander U Ernst
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell D Plesser
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Natalie K Brown
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tigran Mehrabyan
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Sambathkumar R, Migliorini A, Nostro MC. Pluripotent Stem Cell-Derived Pancreatic Progenitors and β-Like Cells for Type 1 Diabetes Treatment. Physiology (Bethesda) 2018; 33:394-402. [DOI: 10.1152/physiol.00026.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, we focus on the processes guiding human pancreas development and provide an update on methods to efficiently generate pancreatic progenitors (PPs) and β-like cells in vitro from human pluripotent stem cells (hPSCs). Furthermore, we assess the strengths and weaknesses of using PPs and β-like cell for cell replacement therapy for the treatment of Type 1 diabetes with respect to cell manufacturing, engrafting, functionality, and safety. Finally, we discuss the identification and use of specific cell surface markers to generate safer populations of PPs for clinical translation and to study the development of PPs in vivo and in vitro.
Collapse
Affiliation(s)
- Rangarajan Sambathkumar
- Toronto General Hospital Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | - Adriana Migliorini
- Toronto General Hospital Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | - Maria Cristina Nostro
- Toronto General Hospital Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Boratyńska M, Patrzałek D. Transplantology: Challenges for Today. Arch Immunol Ther Exp (Warsz) 2017; 64:37-45. [PMID: 28083612 PMCID: PMC5334381 DOI: 10.1007/s00005-016-0439-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023]
Abstract
Clinical transplantology in Poland had its 50th anniversary this year. With the early and long results comparable to the best achieved in the world leading centers, we face old and completely new challenges for this medical speciality. Main and growing challenge is insufficient number of available organs. With less than 15 donors/mln population/year Poland stay in the lower row of European countries in this measurement of transplant activity. Donation system is not efficient enough and we lose a big number of potential donors still. Living donation (with the exception for the fragments of the liver) remains low despite of different initiatives made so far on the national and local levels. Donation after cardiac death is possible from the point of Polish juridical regulations, but since last 3 years had not showed real impact on country donation rates (only three procedures done). Methods of tissue typing remain slow and cause relatively long times of cold ischemia for kidney programs. Second main challenge is chronic rejection causing loss of organs in the long-term follow-up and no efficient treatment employed. The emerging possibility of tolerance induction despite of plenty of new protocols proposition in the publications does not show up a clinical everyday practice in work. The same is with xenotransplantation promises; even we were informed recently that till 2030 such genetically modified porcine organs will be available. The next challenge is production of organs and tissues from own recipients cells installed on the different scaffolds or 3D printed. Other challenge is the personnel working in this field. We observe like in the other European countries lack of new candidates for work in this field together with serious problems of nursing staff, being a catastrophic perspective in country medical service in general, not only in transplant centers. The last but not least challenge is financial side of transplant programs.
Collapse
Affiliation(s)
- Maria Boratyńska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Dariusz Patrzałek
- Department of Clinical Basics of Physiotherapy, Faculty of Health Science, Wroclaw Medical University, Wrocław, Poland.
| |
Collapse
|
5
|
Chen YB, Kawai T, Spitzer TR. Combined Bone Marrow and Kidney Transplantation for the Induction of Specific Tolerance. Adv Hematol 2016; 2016:6471901. [PMID: 27239198 PMCID: PMC4867066 DOI: 10.1155/2016/6471901] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 12/02/2022] Open
Abstract
The induction of specific tolerance, in order to avoid the detrimental effects of lifelong systemic immunosuppressive therapy after organ transplantation, has been considered the "Holy Grail" of transplantation. Experimentally, tolerance has been achieved through clonal deletion, through costimulatory blockade, through the induction or infusion of regulatory T-cells, and through the establishment of hematopoietic chimerism following donor bone marrow transplantation. The focus of this review is how tolerance has been achieved following combined bone marrow and kidney transplantation. Preclinical models of combined bone marrow and kidney transplantation have shown that tolerance can be achieved through either transient or sustained hematopoietic chimerism. Combined transplants for patients with multiple myeloma have shown that organ tolerance and prolonged disease remissions can be accomplished with such an approach. Similarly, multiple clinical strategies for achieving tolerance in patients without an underlying malignancy have been described, in the context of either transient or durable mixed chimerism or sustained full donor hematopoiesis. To expand the chimerism approach to deceased donor transplants, a delayed tolerance approach, which will involve organ transplantation with conventional immunosuppression followed months later by bone marrow transplantation, has been successful in a primate model. As combined bone marrow and organ transplantation become safer and increasingly successful, the achievement of specific tolerance may become more widely applicable.
Collapse
Affiliation(s)
- Yi-Bin Chen
- Bone Marrow Transplant Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tatsuo Kawai
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Thomas R. Spitzer
- Bone Marrow Transplant Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|