1
|
Li Y, He C, Liu R, Xiao Z, Sun B. Stem cells therapy for diabetes: from past to future. Cytotherapy 2023; 25:1125-1138. [PMID: 37256240 DOI: 10.1016/j.jcyt.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Diabetes mellitus is a chronic disease of carbohydrate metabolism characterized by uncontrolled hyperglycemia due to the body's impaired ability to produce or respond to insulin. Oral or injectable exogenous insulin and its analogs cannot mimic endogenous insulin secreted by healthy individuals, and pancreatic and islet transplants face a severe shortage of sources and transplant complications, all of which limit the widespread use of traditional strategies in diabetes treatment. We are now in the era of stem cells and their potential in ameliorating human disease. At the same time, the rapid development of gene editing and cell-encapsulation technologies has added to the wings of stem cell therapy. However, there are still many unanswered questions before stem cell therapy can be applied clinically to patients with diabetes. In this review, we discuss the progress of strategies to obtain insulin-producing cells from different types of stem cells, the application of gene editing in stem cell therapy for diabetes, as well as summarize the current advanced cell encapsulation technologies in diabetes therapy and look forward to the future development of stem cell therapy in diabetes.
Collapse
Affiliation(s)
- Yumin Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Cong He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital,The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Rui Liu
- Department of Genetic Engineering, College of Natural Science, University of Suwon, Kyunggi-Do, Republic of Korea
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Bourgeois S, Sawatani T, Van Mulders A, De Leu N, Heremans Y, Heimberg H, Cnop M, Staels W. Towards a Functional Cure for Diabetes Using Stem Cell-Derived Beta Cells: Are We There Yet? Cells 2021; 10:cells10010191. [PMID: 33477961 PMCID: PMC7835995 DOI: 10.3390/cells10010191] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a pandemic metabolic disorder that results from either the autoimmune destruction or the dysfunction of insulin-producing pancreatic beta cells. A promising cure is beta cell replacement through the transplantation of islets of Langerhans. However, donor shortage hinders the widespread implementation of this therapy. Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, represent an attractive alternative beta cell source for transplantation. Although major advances over the past two decades have led to the generation of stem cell-derived beta-like cells that share many features with genuine beta cells, producing fully mature beta cells remains challenging. Here, we review the current status of beta cell differentiation protocols and highlight specific challenges that are associated with producing mature beta cells. We address the challenges and opportunities that are offered by monogenic forms of diabetes. Finally, we discuss the remaining hurdles for clinical application of stem cell-derived beta cells and the status of ongoing clinical trials.
Collapse
Affiliation(s)
- Stephanie Bourgeois
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium; (T.S.); (M.C.)
| | - Annelore Van Mulders
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Nico De Leu
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
- Department of Endocrinology, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Endocrinology, ASZ Aalst, 9300 Aalst, Belgium
| | - Yves Heremans
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Harry Heimberg
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium; (T.S.); (M.C.)
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Willem Staels
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
- Service of Pediatric Endocrinology, Department of Pediatrics, KidZ Health Castle, Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-0-24774473
| |
Collapse
|
3
|
Wang L, Liu T, Liang R, Wang G, Liu Y, Zou J, Liu N, Zhang B, Liu Y, Ding X, Cai X, Wang Z, Xu X, Ricordi C, Wang S, Shen Z. Mesenchymal stem cells ameliorate β cell dysfunction of human type 2 diabetic islets by reversing β cell dedifferentiation. EBioMedicine 2020; 51:102615. [PMID: 31918404 PMCID: PMC7000334 DOI: 10.1016/j.ebiom.2019.102615] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Background A physiological hallmark of patients with type 2 diabetes mellitus (T2DM) is β cell dysfunction. Despite adequate treatment, it is an irreversible process that follows disease progression. Therefore, the development of novel therapies that restore β cell function is of utmost importance. Methods This study aims to unveil the mechanistic action of mesenchymal stem cells (MSCs) by investigating its impact on isolated human T2DM islets ex vivo and in vivo. Findings We propose that MSCs can attenuate β cell dysfunction by reversing β cell dedifferentiation in an IL-1Ra-mediated manner. In response to the elevated expression of proinflammatory cytokines in human T2DM islet cells, we observed that MSCs was activated to secret IL-1R antagonist (IL-1Ra) which acted on the inflammed islets and reversed β cell dedifferentiation, suggesting a crosstalk between MSCs and human T2DM islets. The co-transplantation of MSCs with human T2DM islets in diabetic SCID mice and intravenous infusion of MSCs in db/db mice revealed the reversal of β cell dedifferentiation and improved glycaemic control in the latter. Interpretation This evidence highlights the potential of MSCs in future cell-based therapies regarding the amelioration of β cell dysfunction.
Collapse
Affiliation(s)
- Le Wang
- Organ Transplant Centre, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China; NHC Key Laboratory for Critical Care Medicine, Tianjin 300384, China
| | - Tengli Liu
- NHC Key Laboratory for Critical Care Medicine, Tianjin 300384, China; Diabetes Research Institute Federation, Hollywood, FL 33021, USA
| | - Rui Liang
- NHC Key Laboratory for Critical Care Medicine, Tianjin 300384, China; Diabetes Research Institute Federation, Hollywood, FL 33021, USA
| | - Guanqiao Wang
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yaojuan Liu
- NHC Key Laboratory for Critical Care Medicine, Tianjin 300384, China
| | - Jiaqi Zou
- NHC Key Laboratory for Critical Care Medicine, Tianjin 300384, China
| | - Na Liu
- NHC Key Laboratory for Critical Care Medicine, Tianjin 300384, China
| | - Boya Zhang
- Organ Transplant Centre, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Yan Liu
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Xuejie Ding
- Organ Transplant Centre, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Xiangheng Cai
- The First Central Clinical College, Tianjin Medical University, Tianjin, 300192, China
| | - Zhiping Wang
- Organ Transplant Centre, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Xiumin Xu
- Diabetes Research Institute, Cell Transplant Centre; Department of Surgery; Department Medicine; Miller School of Medicine, University of Miami, Miami, FL 33136, USA; The Cure Alliance, Miami, FL 33137, USA; Diabetes Research Institute Federation, Hollywood, FL 33021, USA
| | - Camillo Ricordi
- Diabetes Research Institute, Cell Transplant Centre; Department of Surgery; Department Medicine; Miller School of Medicine, University of Miami, Miami, FL 33136, USA; The Cure Alliance, Miami, FL 33137, USA; Diabetes Research Institute Federation, Hollywood, FL 33021, USA
| | - Shusen Wang
- Organ Transplant Centre, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China; NHC Key Laboratory for Critical Care Medicine, Tianjin 300384, China; Diabetes Research Institute Federation, Hollywood, FL 33021, USA.
| | - Zhongyang Shen
- Organ Transplant Centre, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China; Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China.
| |
Collapse
|
4
|
Li X, Lang H, Li B, Zhang C, Sun N, Lin J, Zhang J. Change in Viability and Function of Pancreatic Islets after Coculture with Mesenchymal Stromal Cells: A Systemic Review and Meta-Analysis. J Diabetes Res 2020; 2020:5860417. [PMID: 32309447 PMCID: PMC7132593 DOI: 10.1155/2020/5860417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/16/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND There is no clear consensus on the effect of coculture of islets with mesenchymal stem cells (MSCs) on islet function and viability. METHODS We conducted a meta-analysis of relevant studies to evaluate the effect of coculture of islets with MSCs on the function and viability of islets, both in vitro and in vivo. We searched PubMed, Embase, and Web of Science databases for all relevant studies that compared the effect of coculture of islets with MSCs on the function and viability of islets (language of publication: English; reference period: January 2000-May 2019). Data pertaining to islet function and viability, concentrations of some cytokines, and in vivo experimental outcomes were extracted and compared. RESULTS Twenty-four articles were included in the meta-analysis. In comparison to islets cultured alone, coculture of islets with MSCs was associated with a significantly higher islet viability [weighted mean difference (WMD), -15.59; -22.34 to -8.83; P < 0.00001], insulin level (WMD, -5.74; -9.29 to -2.19; P = 0.002), insulin secretion index (WMD, -2.45; -3.70 to -1.21; P = 0.0001), and higher concentrations of interleukin-6 (WMD, -1225.66; -2044.47 to -406.86; P = 0.003) and vascular endothelial growth factor (WMD, -1.19; -2.25 to -0.14; P = 0.03). Direct coculture of islets and MSCs significantly increased islet viability (WMD, -19.82; -26.56 to -13.07; P < 0.00001). In the in vivo experiments, coculture of islets with MSCs induced lower fasting blood glucose level (on postoperative days 21 and 28, WMD, 102.60; 27.14 to 178.05; P = 0.008 and WMD, 121.19; 49.56 to 192.82; P = 0.0009) and better glucose tolerance (blood glucose at 30 minutes after intraperitoneal injection of glucose, WMD, 85.92; 5.33 to 166.51; P = 0.04). CONCLUSION Coculture of islets with MSCs improves insulin secretory function of islets and enhances islet viability. Direct coculture of two cells significantly increased islet viability. MSC-based strategy may be beneficial for clinical islet transplantation for type 1 diabetes in the future.
Collapse
Affiliation(s)
- Xiaohang Li
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Hongxin Lang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory for Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, No. 77 Puhe Street, Shenbei New District, Shenyang, 110122 Liaoning Province, China
| | - Baifeng Li
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Chengshuo Zhang
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Ning Sun
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Jianzhen Lin
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Jialin Zhang
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| |
Collapse
|
5
|
Senior PA, Pettus JH. Stem cell therapies for Type 1 diabetes: current status and proposed road map to guide successful clinical trials. Diabet Med 2019; 36:297-307. [PMID: 30362170 DOI: 10.1111/dme.13846] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2018] [Indexed: 12/17/2022]
Abstract
Many people with Type 1 diabetes struggle with the burden of self-management and are unable to achieve optimal glycaemic control without risk of hypoglycaemia. Future therapies with the potential to reduce the risk for short- and long-term complications while simultaneously reducing the burden of diabetes are therefore attractive. β-cell replacement is one strategy which might achieve this. Islet transplantation is limited by organ supply and the risks of long-term immunosuppression. Encapsulated stem-cell-derived β cells have the potential to address both of these issues and phase I/II clinical trials of encapsulated pancreatic progenitors have begun. A significant risk associated with the translation of stem-cell science to the clinical management of Type 1 diabetes is an underestimation of the complexity of the process and a mismatch between the hype and the expectations of both people with Type 1 diabetes and the public. We provide an update on progress in clinical trials of encapsulated stem-cell-derived β cells and propose a road map for the design and conduct of future trials to facilitate the translation of this exciting science to clinical care.
Collapse
Affiliation(s)
- P A Senior
- Division of Endocrinology, University of Alberta, Edmonton, Alberta, Canada
| | - J H Pettus
- Division of Endocrinology, University of California, San Diego, CA, USA
| |
Collapse
|
6
|
Khosravi M, Bidmeshkipour A, Moravej A, Hojjat-Assari S, Naserian S, Karimi MH. Induction of CD4 +CD25 +Foxp3 + regulatory T cells by mesenchymal stem cells is associated with RUNX complex factors. Immunol Res 2019; 66:207-218. [PMID: 29143918 DOI: 10.1007/s12026-017-8973-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among the particular immunomodulation properties of mesenchymal stem cells (MSCs), one relies on their capacity to regulatory T cell (Treg) induction from effector T cells. Stable expression of Foxp3 has a dominant role in suppressive phenotype and stability of induced regulatory T cells (iTregs). How MSCs induce stable Foxp3 expression in iTregs remains unknown. We previously showed MSCs could enhance demethylation of Treg-specific demethylated region (TSDR) in iTregs in cell-cell contact manner (unpublished data). Here, we evaluated the possible effect of MSCs on the mRNA expression of Runx complex genes (Runx1, Runx3, and CBFB) that perch on TSDR in iTregs and play the main role in suppressive properties of Tregs, a regulatory pathway that has not yet been explored by MSCs. Also, we investigated the mRNA expression of MBD2 that promotes TSDR demethylation in Tregs. We first showed that in vitro MSC-iTreg induction was associated with strong mRNA modifications of genes involved in Runx complex. We next injected high doses of MSCs in a murine model of C57BL/6 into Balb/C allogeneic skin transplantation to prolong allograft survival. When splenocytes of grafted mice were analyzed, we realized that the Foxp3 expression was increased at day 5 and 10 post-graft merely in MSC-treated mice. Furthermore, Foxp3 mRNA expression was associated with modified Runx complex mRNA expression comparable to what was shown in in vitro studies. Hence, our data identify a possible mechanism in which MSCs convert conventional T cells to iTreg through strong modifications of mRNA of genes that are involved in Runx complex of Foxp3.
Collapse
Affiliation(s)
- Maryam Khosravi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.,Institut Français de Recherche et d'Enseignement Supérieur à l'International (IFRES-INT), Paris, France
| | - Ali Bidmeshkipour
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Ali Moravej
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Suzzan Hojjat-Assari
- Institut Français de Recherche et d'Enseignement Supérieur à l'International (IFRES-INT), Paris, France
| | - Sina Naserian
- Inserm, U1197, Hôpital Paul Brousse, 94807, Villejuif, France
| | | |
Collapse
|
7
|
Mesenchymal stem cells to treat type 1 diabetes. Biochim Biophys Acta Mol Basis Dis 2018; 1866:165315. [PMID: 30508575 DOI: 10.1016/j.bbadis.2018.10.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
What is clear is we are in the era of the stem cell and its potential in ameliorating human disease. Our perspective is generated from an in vivo model in a large animal that offers significant advantages (complete transplantation tolerance, large size and long life span). This review is an effort to meld our preclinical observations with others for the reader and to outline potential avenues to improve the present outlook for patients with diabetes. This effort exams the history or background of stem cell research in the laboratory and the clinic, types of stem cells, pluripotency or lack thereof based on a variety of pre-clinical investigations attempting endocrine pancreas recovery using stem cell transplantation. The focus is on the use of hematopoietic and mesenchymal stem cells. This review will also examine recent clinical experience following stem cell transplantation in patients with type 1 diabetes.
Collapse
|
8
|
Khosravi M, Bidmeshkipour A, Cohen JL, Moravej A, Hojjat-Assari S, Naserian S, Karimi MH. Induction of CD4 +CD25 +FOXP3 + regulatory T cells by mesenchymal stem cells is associated with modulation of ubiquitination factors and TSDR demethylation. Stem Cell Res Ther 2018; 9:273. [PMID: 30359308 PMCID: PMC6203284 DOI: 10.1186/s13287-018-0991-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are known for their ability to induce the conversion of conventional T cells (Tconvs) into induced regulatory T cells (iTregs) in specific inflammatory contexts. Stable Foxp3 expression plays a major role in the phenotypic and functional stability of iTregs. However, how MSCs induce stable Foxp3 expression remains unknown. Methods We first investigated the role of cell–cell contact and cytokine secretion by bone marrow-derived MSCs (BM-MSCs) on the induction, stability, and suppressive functions of Tregs under various experimental conditions that lead to Foxp3 generation by flow cytometry and ELISA respectively. Second, we studied the effect of MSCs on TRAF6, GRAIL, USP7, STUB1, and UBC13 mRNA expression in CD4+ T cells in correlation with the suppressive function of iTregs by real-time PCR; also, we investigated Foxp3 Treg-specific demethylated region (TSDR) methylation in correlation with Foxp3 stability by the high-resolution melting technique. Third, we studied the effect of ex-vivo-expanded BM-MSCs on the induction of transplant tolerance in a model of fully allogeneic skin transplantation. We further analyzed the cytokine secretion patterns in grafted mice as well as the mRNA expression of ubiquitination genes in CD4+ T cells collected from the spleens of protected mice. Results We found that in-vitro MSC-induced Tregs express high mRNA levels of ubiquitination genes such as TRAF6, GRAIL, and USP7 and low levels of STUB1. Moreover, they have enhanced TSDR demethylation. Infusion of MSCs in a murine model of allogeneic skin transplantation prolonged allograft survival. When CD4+ T cells were harvested from the spleens of grafted mice, we observed that mRNA expression of the Foxp3 gene was elevated. Furthermore, Foxp3 mRNA expression was associated with increased TRAF6, GRAIL, UBC13, and USP7 and decreased STUB1 mRNA levels compared with the levels observed in vitro. Conclusions Our data suggest a possible ubiquitination mechanism by which MSCs convert Tconvs to suppressive and stable iTregs. Electronic supplementary material The online version of this article (10.1186/s13287-018-0991-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maryam Khosravi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.,Inserm, U955, Equipe 21, F-94000, Créteil, France
| | - Ali Bidmeshkipour
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - José L Cohen
- Université Paris-Est, UMR_S955, UPEC, F-94000, Créteil, France.,Inserm, U955, Equipe 21, F-94000, Créteil, France.,UPEC, APHP, Inserm, CIC Biothérapie, Hôpital Henri Mondor, 94010, Créteil, France
| | - Ali Moravej
- Noncommunicable Diseases Research Centre, Fasa University of Medical Sciences, Fasa, Iran
| | - Suzzan Hojjat-Assari
- Institut Français de Recherche et d'Enseignement Supérieur à l'International (IFRES-INT), Paris, France
| | - Sina Naserian
- Université Paris-Est, UMR_S955, UPEC, F-94000, Créteil, France.,Inserm, U955, Equipe 21, F-94000, Créteil, France.,Inserm, U1197, Hôpital Paul Brousse, 94807, Villejuif, France.,SivanCell, Alborz University of Medical Sciences, Alborz, Iran
| | | |
Collapse
|
9
|
Jia Z, Li F, Zeng X, Lv Y, Zhao S. The effects of local administration of mesenchymal stem cells on rat corneal allograft rejection. BMC Ophthalmol 2018; 18:139. [PMID: 29884142 PMCID: PMC5994063 DOI: 10.1186/s12886-018-0802-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 05/30/2018] [Indexed: 12/21/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been reported to promote long-term cellular and organ transplant acceptance due to their immunotherapeutic characteristics. Previous work from our lab using a rat allograft model has shown that systemic infusion of MSCs inhibited corneal allograft rejection and prolonged graft survival. Here, we further investigated the effects of local MSCs administration in the same animal model. Methods Donor-derived MSCs were isolated and cultured while corneal grafts obtained from Wistar rats were transplanted into Lewis rat hosts. Hosts were then randomly separated into four groups and treated with previously cultured MSCs at different times and doses. Graft survival was clinically assessed using slit-lamp biomicroscopy and the median survival time (MST) was calculated. Grafts were examined histologically using hematoxylin-eosin (H-E) staining and immunohistochemically using antibodies against CD4. A comprehensive graft analysis of IL-2, IL-4, IL-10, and IFN-γ expression was also conducted using both real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Results Postoperative MSCs injection prolonged graft survival time when compared with controls (MST 9.8 ± 1.2 days). Injection twice of MSCs (MST 12.6 ± 1.4 days) was more effective than a single injection (MST 10.8 ± 1.3 days). MSCs-treated groups also showed suppression of inflammatory cell as well as CD4 + T cell infiltration in the allograft region. IL-4 and IL-10 levels were significantly increased in grafts obtained from postoperative twice MSCs-treated rats when compared with controls. There were no significant differences in IL-2 or IFN-γ expression across groups. Conclusions Subconjunctival injection of MSCs in rats was effective in prolonging corneal allograft survival. This effect was mediated by inhibition of inflammatory and immune responses, indicating an anti-inflammatory shift in the balance of T helper (Th)1 to T helper(Th) 2. Electronic supplementary material The online version of this article (10.1186/s12886-018-0802-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhe Jia
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No. 251, Fukang R., Nankai Dist, Tianjin, China
| | - Fei Li
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No. 251, Fukang R., Nankai Dist, Tianjin, China
| | - Xiaoyu Zeng
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No. 251, Fukang R., Nankai Dist, Tianjin, China
| | - Ying Lv
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No. 251, Fukang R., Nankai Dist, Tianjin, China
| | - Shaozhen Zhao
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No. 251, Fukang R., Nankai Dist, Tianjin, China.
| |
Collapse
|
10
|
Bryukhovetskiy I, Ponomarenko A, Lyakhova I, Zaitsev S, Zayats Y, Korneyko M, Eliseikina M, Mischenko P, Shevchenko V, Shanker Sharma H, Sharma A, Khotimchenko Y. Personalized regulation of glioblastoma cancer stem cells based on biomedical technologies: From theory to experiment (Review). Int J Mol Med 2018; 42:691-702. [PMID: 29749540 PMCID: PMC6034919 DOI: 10.3892/ijmm.2018.3668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive brain tumors. GBM represents >50% of primary tumors of the nervous system and ~20% of intracranial neoplasms. Standard treatment involves surgery, radiation and chemotherapy. However, the prognosis of GBM is usually poor, with a median survival of 15 months. Resistance of GBM to treatment can be explained by the presence of cancer stem cells (CSCs) among the GBM cell population. At present, there are no effective therapeutic strategies for the elimination of CSCs. The present review examined the nature of human GBM therapeutic resistance and attempted to systematize and put forward novel approaches for a personalized therapy of GBM that not only destroys tumor tissue, but also regulates cellular signaling and the morphogenetic properties of CSCs. The CSCs are considered to be an informationally accessible living system, and the CSC proteome should be used as a target for therapy directed at suppressing clonal selection mechanisms and CSC generation, destroying CSC hierarchy, and disrupting the interaction of CSCs with their microenvironment and extracellular matrix. These objectives can be achieved through the use of biomedical cellular products.
Collapse
Affiliation(s)
| | | | - Irina Lyakhova
- Far Eastern Federal University, Vladivostok 690091, Russia
| | - Sergey Zaitsev
- Far Eastern Federal University, Vladivostok 690091, Russia
| | - Yulia Zayats
- Far Eastern Federal University, Vladivostok 690091, Russia
| | - Maria Korneyko
- Far Eastern Federal University, Vladivostok 690091, Russia
| | - Marina Eliseikina
- National Scientific Center of Marine Biology of Far Eastern Branch of The Russian Academy of Sciences, Vladivostok 690059, Russia
| | | | | | - Hari Shanker Sharma
- International Experimental CNS Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, Uppsala SE‑75185, Sweden
| | - Aruna Sharma
- International Experimental CNS Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, Uppsala SE‑75185, Sweden
| | | |
Collapse
|