1
|
Stevens HY, Jimenez AC, Wang B, Li Y, Selvam S, Bowles-Welch AC. Mesenchymal Stromal Cell (MSC) Functional Analysis-Macrophage Activation and Polarization Assays. Bio Protoc 2024; 14:e4957. [PMID: 38841292 PMCID: PMC10958173 DOI: 10.21769/bioprotoc.4957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 06/07/2024] Open
Abstract
Stem cell-based therapies have evolved to become a key component of regenerative medicine approaches to human pathologies. Exogenous stem cell transplantation takes advantage of the potential of stem cells to self-renew, differentiate, home to sites of injury, and sufficiently evade the immune system to remain viable for the release of anti-inflammatory cytokines, chemokines, and growth factors. Common to many pathologies is the exacerbation of inflammation at the injury site by proinflammatory macrophages. An increasing body of evidence has demonstrated that mesenchymal stromal cells (MSCs) can influence the immunophenotype and function of myeloid lineage cells to promote therapeutic effects. Understanding the degree to which MSCs can modulate the phenotype of macrophages within an inflammatory environment is of interest when considering strategies for targeted cell therapies. There is a critical need for potency assays to elucidate these intercellular interactions in vitro and provide insight into potential mechanisms of action attributable to the immunomodulatory and polarizing capacities of MSCs, as well as other cells with immunomodulatory potential. However, the complexity of the responses, in terms of cell phenotypes and characteristics, timing of these interactions, and the degree to which cell contact is involved, have made the study of these interactions challenging. To provide a research tool to study the direct interactions between MSCs and macrophages, we developed a potency assay that directly co-cultures MSCs with naïve macrophages under proinflammatory conditions. Using this assay, we demonstrated changes in the macrophage secretome and phenotype, which can be used to evaluate the abilities of the cell samples to influence the cell microenvironment. These results suggest the immunomodulatory effects of MSCs on macrophages while revealing key cytokines and phenotypic changes that may inform their efficacy as potential cellular therapies. Key features • The protocol uses monocytes differentiated into naïve macrophages, which are loosely adherent, have a relatively homogeneous genetic background, and resemble peripheral blood mononuclear cells-derived macrophages. • The protocol requires a plate reader and a flow cytometer with the ability to detect six fluorophores. • The protocol provides a quantitative measurement of co-culture conditions by the addition of a fixed number of freshly thawed or culture-rescued MSCs to macrophages. • This protocol uses assessment of the secretome and cell harvest to independently verify the nature of the interactions between macrophages and MSCs.
Collapse
Affiliation(s)
- Hazel Y. Stevens
- Marcus Center for Therapeutic Cell Characterization
and Manufacturing, Institute for Bioengineering and Bioscience, Georgia
Institute of Technology, Atlanta, GA, USA
| | - Angela C. Jimenez
- Marcus Center for Therapeutic Cell Characterization
and Manufacturing, Institute for Bioengineering and Bioscience, Georgia
Institute of Technology, Atlanta, GA, USA
- The Wallace H. Coulter Department of Biomedical
Engineering, Georgia Tech and Emory University, Atlanta, GA, USA
- The National Science Foundation (NSF) Engineering
Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Georgia
Institute of Technology, Atlanta, GA, USA
| | - Bryan Wang
- Marcus Center for Therapeutic Cell Characterization
and Manufacturing, Institute for Bioengineering and Bioscience, Georgia
Institute of Technology, Atlanta, GA, USA
- The Wallace H. Coulter Department of Biomedical
Engineering, Georgia Tech and Emory University, Atlanta, GA, USA
- The National Science Foundation (NSF) Engineering
Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Georgia
Institute of Technology, Atlanta, GA, USA
| | - Ye Li
- Marcus Center for Therapeutic Cell Characterization
and Manufacturing, Institute for Bioengineering and Bioscience, Georgia
Institute of Technology, Atlanta, GA, USA
| | - Shivaram Selvam
- Marcus Center for Therapeutic Cell Characterization
and Manufacturing, Institute for Bioengineering and Bioscience, Georgia
Institute of Technology, Atlanta, GA, USA
- The National Science Foundation (NSF) Engineering
Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Georgia
Institute of Technology, Atlanta, GA, USA
| | - Annie C. Bowles-Welch
- Marcus Center for Therapeutic Cell Characterization
and Manufacturing, Institute for Bioengineering and Bioscience, Georgia
Institute of Technology, Atlanta, GA, USA
- The National Science Foundation (NSF) Engineering
Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Georgia
Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Andreeva E, Bobyleva P, Gornostaeva A, Buravkova L. Interaction of multipotent mesenchymal stromal and immune cells: Bidirectional effects. Cytotherapy 2017; 19:1152-1166. [PMID: 28823421 DOI: 10.1016/j.jcyt.2017.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/24/2017] [Accepted: 07/02/2017] [Indexed: 12/11/2022]
Abstract
Adult multipotent mesenchymal stromal cells (MSCs) are considered one of the key players in physiological remodeling and tissue reparation. Elucidation of MSC functions is one of the most intriguing issues in modern cell physiology. In the present review, the interaction of MSCs and immune cells is discussed in terms of reciprocal effects, which modifies the properties of "partner" cells with special focus on the contribution of direct cell-to-cell contacts, soluble mediators and local microenvironmental factors, the most important of which is oxygen tension. The immunosuppressive phenomenon of MSCs is considered as the integral part of the response-to-injury mechanism.
Collapse
Affiliation(s)
- Elena Andreeva
- Institute of Biomedical Problems, the Russian Academy of Sciences, Moscow, Russia
| | - Polina Bobyleva
- Institute of Biomedical Problems, the Russian Academy of Sciences, Moscow, Russia
| | | | - Ludmila Buravkova
- Institute of Biomedical Problems, the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Colmenero J, Sancho-Bru P. Mesenchymal stromal cells for immunomodulatory cell therapy in liver transplantation: One step at a time. J Hepatol 2017; 67:7-9. [PMID: 28435042 DOI: 10.1016/j.jhep.2017.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Jordi Colmenero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Liver Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Liver Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
| |
Collapse
|
4
|
Safety and Tolerance of Donor-Derived Mesenchymal Stem Cells in Pediatric Living-Donor Liver Transplantation: The MYSTEP1 Study. Stem Cells Int 2017; 2017:2352954. [PMID: 28740511 PMCID: PMC5504958 DOI: 10.1155/2017/2352954] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022] Open
Abstract
Background Calcineurin inhibitors (CNI) have significantly improved patient and graft survival in pediatric liver transplantation (pLT). However, CNI toxicity leads to significant morbidity. Moreover, CNIs cannot prevent long-term allograft injury. Mesenchymal stem (stromal) cells (MSC) have potent immunomodulatory properties, which may promote allograft tolerance and ameliorate toxicity of high-dose CNI. The MYSTEP1 trial aims to investigate safety and feasibility of donor-derived MSCs in pLT. Methods/Design 7 to 10 children undergoing living-donor pLT will be included in this open-label, prospective pilot trial. A dose of 1 × 106 MSCs/kg body weight will be given at two time points: first by intraportal infusion intraoperatively and second by intravenous infusion on postoperative day 2. In addition, participants will receive standard immunosuppressive treatment. Our primary objective is to assess the safety of intraportal and intravenous MSC infusion in pLT recipients. Our secondary objective is to evaluate efficacy of MSC treatment as measured by the individual need for immunosuppression and the incidence of biopsy-proven acute rejection. We will perform detailed immune monitoring to investigate immunomodulatory effects. Discussion Our study will provide information on the safety of donor-derived MSCs in pediatric living-donor liver transplantation and their effect on immunomodulation and graft survival.
Collapse
|