1
|
Kwiatek M, Kojak A, Kwaśniewska A. OX40 (CD134) Expression on T Regulatory Cells Is Related to Serious Hypertensive Disorders in Pregnancy. J Cardiovasc Dev Dis 2023; 10:431. [PMID: 37887878 PMCID: PMC10607140 DOI: 10.3390/jcdd10100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 10/28/2023] Open
Abstract
Hypertension is one of the leading causes of morbidity and mortality among women related to pregnancy, childbirth and the postpartum period. The pathogenesis of gestational hypertension is complex and still not fully understood. The aim of this study was to assess the population of circulating CD4+CD25+FoxP3+ cells and its differentiation in terms of OX40 expression in two forms of hypertension: isolated hypertension developing after the 20th week of pregnancy and pre-eclampsia. The study included a group of 60 patients with hypertension and 48 healthy controls. The analysis of the percentage of Tregs was performed by flow cytometry. There was no difference in the percentage of peripheral lymphocytes between the groups. In the group of women with preeclampsia compared to the group with gestational hypertension, significantly higher percentages of CD4+CD25+FoxP3+ cells (p = 0.03) and percentages of CD4+CD25+FoxP3+ cells expressing the OX40 antigen (p = 0.001) were observed. OX40 expression on Tregs seems to be related to more serious type of hypertensive disorders in pregnant women.
Collapse
Affiliation(s)
- Maciej Kwiatek
- Department of Obstetrics and Pregnancy Pathology, Medical University of Lublin, 20-059 Lublin, Poland; (A.K.); (A.K.)
| | | | | |
Collapse
|
2
|
Imani J, Liu K, Cui Y, Assaker JP, Han J, Ghosh AJ, Ng J, Shrestha S, Lamattina AM, Louis PH, Hentschel A, Esposito AJ, Rosas IO, Liu X, Perrella MA, Azzi J, Visner G, El-Chemaly S. Blocking hyaluronan synthesis alleviates acute lung allograft rejection. JCI Insight 2021; 6:142217. [PMID: 34665782 PMCID: PMC8663774 DOI: 10.1172/jci.insight.142217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/13/2021] [Indexed: 11/29/2022] Open
Abstract
Lung allograft rejection results in the accumulation of low–molecular weight hyaluronic acid (LMW-HA), which further propagates inflammation and tissue injury. We have previously shown that therapeutic lymphangiogenesis in a murine model of lung allograft rejection reduced tissue LMW-HA and was associated with improved transplant outcomes. Herein, we investigated the use of 4-Methylumbelliferone (4MU), a known inhibitor of HA synthesis, to alleviate acute allograft rejection in a murine model of lung transplantation. We found that treating mice with 4MU from days 20 to 30 after transplant was sufficient to significantly improve outcomes, characterized by a reduction in T cell–mediated lung inflammation and LMW-HA content and in improved pathology scores. In vitro, 4MU directly attenuated activation, proliferation, and differentiation of naive CD4+ T cells into Th1 cells. As 4MU has already been demonstrated to be safe for human use, we believe examining 4MU for the treatment of acute lung allograft rejection may be of clinical significance.
Collapse
Affiliation(s)
- Jewel Imani
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaifeng Liu
- Division of Pulmonary and Critical Care Medicine, Boston Children Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ye Cui
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Junwen Han
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Auyon J Ghosh
- Division of Pulmonary, Critical Care, and Sleep Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shikshya Shrestha
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony M Lamattina
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pierce H Louis
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anne Hentschel
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony J Esposito
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jamil Azzi
- Transplantation Research Center, Renal Division, and
| | - Gary Visner
- Division of Pulmonary and Critical Care Medicine, Boston Children Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Zhang H, Wu J, Zou D, Xiao X, Yan H, Li XC, Chen W. Ablation of interferon regulatory factor 4 in T cells induces "memory" of transplant tolerance that is irreversible by immune checkpoint blockade. Am J Transplant 2019; 19:884-893. [PMID: 30468559 PMCID: PMC6440205 DOI: 10.1111/ajt.15196] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 01/25/2023]
Abstract
Achieving transplant tolerance remains the ultimate goal in the field of organ transplantation. We demonstrated previously that ablation of the transcription factor interferon regulatory factor 4 (IRF4) in T cells induced heart transplant acceptance by driving allogeneic CD4+ T cell dysfunction. Herein, we showed that heart-transplanted mice with T cell-specific IRF4 deletion were tolerant to donor-specific antigens and accepted the subsequently transplanted donor-type but not third-party skin allografts. Moreover, despite the rejection of the primary heart grafts in T cell-specific Irf4 knockout mice under immune checkpoint blockade, the establishment of donor-specific tolerance in these mice was unhindered. By tracking alloantigen-specific CD4+ T cells in vivo, we revealed that checkpoint blockade restored the expression levels of the majority of wild-type T cell-expressed genes in Irf4-deficient T cells on day 6 post-heart grafting, indicating the initial reinvigoration of Irf4-deficient T cells. Nevertheless, checkpoint blockade did not restore cell frequency, effector memory cell generation, and IFN-γ/TNF-α production of Irf4-/- alloreactive T cells at day 30 post-heart grafting. Hence, targeting IRF4 represents a potential therapeutic strategy for driving intrinsic T cell dysfunction and achieving alloantigen-specific transplant tolerance.
Collapse
Affiliation(s)
- Hedong Zhang
- Immunobiology & Transplant Science Center, Houston
Methodist Research Institute, Texas Medical Center, Houston, Texas,Department of Urological Organ Transplantation, Center of
Organ Transplantation, The Second Xiangya Hospital of Central South University,
Changsha, China
| | - Jie Wu
- Immunobiology & Transplant Science Center, Houston
Methodist Research Institute, Texas Medical Center, Houston, Texas,Department of Cardiovascular Surgery, Tongji Medical
College, Huazhong University of Science and Technology, Union Hospital, Wuhan,
China
| | - Dawei Zou
- Immunobiology & Transplant Science Center, Houston
Methodist Research Institute, Texas Medical Center, Houston, Texas
| | - Xiang Xiao
- Immunobiology & Transplant Science Center, Houston
Methodist Research Institute, Texas Medical Center, Houston, Texas
| | - Hui Yan
- Immunobiology & Transplant Science Center, Houston
Methodist Research Institute, Texas Medical Center, Houston, Texas
| | - Xian C. Li
- Immunobiology & Transplant Science Center, Houston
Methodist Research Institute, Texas Medical Center, Houston, Texas,Department of Surgery, Weill Cornell Medical College,
Cornell University, New York, New York
| | - Wenhao Chen
- Immunobiology & Transplant Science Center, Houston
Methodist Research Institute, Texas Medical Center, Houston, Texas,Department of Surgery, Weill Cornell Medical College,
Cornell University, New York, New York
| |
Collapse
|