1
|
Klabukov I, Atiakshin D, Kogan E, Ignatyuk M, Krasheninnikov M, Zharkov N, Yakimova A, Grinevich V, Pryanikov P, Parshin V, Sosin D, Kostin AA, Shegay P, Kaprin AD, Baranovskii D. Post-Implantation Inflammatory Responses to Xenogeneic Tissue-Engineered Cartilage Implanted in Rabbit Trachea: The Role of Cultured Chondrocytes in the Modification of Inflammation. Int J Mol Sci 2023; 24:16783. [PMID: 38069106 PMCID: PMC10706106 DOI: 10.3390/ijms242316783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Immune responses to tissue-engineered grafts made of xenogeneic materials remain poorly studied. The scope of current investigations is limited by the lack of information on orthotopically implanted grafts. A deeper understanding of these processes is of great importance since innovative surgical approaches include the implantation of xenogeneic decellularized scaffolds seeded by cells. The purpose of our work is to study the immunological features of tracheal repair during the implantation of tissue-engineered constructs based on human xenogeneic scaffolds modified via laser radiation in rabbits. The samples were stained with hematoxylin and Safranin O, and they were immunostained with antibodies against tryptase, collagen II, vimentin, and CD34. Immunological and inflammatory responses were studied by counting immune cells and evaluating blood vessels and collagen. Leukocyte-based inflammation prevailed during the implantation of decellularized unseeded scaffolds; meanwhile, plasma cells were significantly more abundant in tissue-engineered constructs. Mast cells were insignificantly more abundant in tissue-engineered construct samples. Conclusions: The seeding of decellularized xenogeneic cartilage with chondrocytes resulted in a change in immunological reactions upon implantation, and it was associated with plasma cell infiltration. Tissue-engineered grafts widely differed in design, including the type of used cells. The question of immunological response depending on the tissue-engineered graft composition requires further investigation.
Collapse
Affiliation(s)
- Ilya Klabukov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, 249031 Obninsk, Russia
| | - Dmitri Atiakshin
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Evgenia Kogan
- Strukov Department of Pathological Anatomy, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Michael Ignatyuk
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Mikhail Krasheninnikov
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Nickolay Zharkov
- Strukov Department of Pathological Anatomy, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Anna Yakimova
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
| | - Vyacheslav Grinevich
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
| | - Pavel Pryanikov
- Russian Child Clinical Hospital, Pirogov Russian National Research Medical University, 119571 Moscow, Russia
| | - Vladimir Parshin
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases of the Ministry of Health of the Russian Federation, 127473 Moscow, Russia
| | - Dmitry Sosin
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Andrey A. Kostin
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Peter Shegay
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
| | - Andrey D. Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Denis Baranovskii
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Department of Biomedicine, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
2
|
Padma AM, Carrière L, Krokström Karlsson F, Sehic E, Bandstein S, Tiemann TT, Oltean M, Song MJ, Brännström M, Hellström M. Towards a bioengineered uterus: bioactive sheep uterus scaffolds are effectively recellularized by enzymatic preconditioning. NPJ Regen Med 2021; 6:26. [PMID: 34021161 PMCID: PMC8140118 DOI: 10.1038/s41536-021-00136-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
Uterine factor infertility was considered incurable until recently when we reported the first successful live birth after uterus transplantation. However, risky donor surgery and immunosuppressive therapy are factors that may be avoided with bioengineering. For example, transplanted recellularized constructs derived from decellularized tissue restored fertility in rodent models and mandate translational studies. In this study, we decellularized whole sheep uterus with three different protocols using 0.5% sodium dodecyl sulfate, 2% sodium deoxycholate (SDC) or 2% SDC, and 1% Triton X-100. Scaffolds were then assessed for bioactivity using the dorsal root ganglion and chorioallantoic membrane assays, and we found that all the uterus scaffolds exhibited growth factor activity that promoted neurogenesis and angiogenesis. Extensive recellularization optimization was conducted using multipotent sheep fetal stem cells and we report results from the following three in vitro conditions; (a) standard cell culturing conditions, (b) constructs cultured in transwells, and (c) scaffolds preconditioned with matrix metalloproteinase 2 and 9. The recellularization efficiency was improved short-term when transwells were used compared with standard culturing conditions. However, the recellularization efficiency in scaffolds preconditioned with matrix metalloproteinases was 200–300% better than the other strategies evaluated herein, independent of decellularization protocol. Hence, a major recellularization hurdle has been overcome with the improved recellularization strategies and in vitro platforms described herein. These results are an important milestone and should facilitate the production of large bioengineered grafts suitable for future in vivo applications in the sheep, which is an essential step before considering these principles in a clinical setting.
Collapse
Affiliation(s)
- Arvind Manikantan Padma
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Laura Carrière
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Frida Krokström Karlsson
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Edina Sehic
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara Bandstein
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tom Tristan Tiemann
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Gynecology and Obstetrics, University Hospital of Heidelberg, Heidelberg, Germany
| | - Mihai Oltean
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Surgery, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Min Jong Song
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Yeouido St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Stockholm IVF-EUGIN, Hammarby allé 93, Stockholm, Sweden
| | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Padma AM, Alsheikh AB, Song MJ, Akouri R, Akyürek LM, Oltean M, Brännström M, Hellström M. Immune response after allogeneic transplantation of decellularized uterine scaffolds in the rat. Biomed Mater 2021; 16. [PMID: 33946053 DOI: 10.1088/1748-605x/abfdfe] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/04/2021] [Indexed: 11/11/2022]
Abstract
Data on how the immune system reacts to decellularized scaffolds after implantation is scarce and difficult to interpret due to many heterogeneous parameters such as tissue-type match, decellularization method and treatment application. The engraftment of these scaffolds must prove safe and that they remain inert to the recipient's immune system to enable successful translational approaches and potential future clinical evaluation. Herein, we investigated the immune response after the engraftment of three decellularized scaffold types that previously showed potential to repair a uterine injury in the rat. Protocol (P) 1 and P2 were based on Triton-X100 and generated scaffolds containing 820 ng mg-1and 33 ng mg-1donor DNA per scaffold weight, respectively. Scaffolds obtained with a sodium deoxycholate-based protocol (P3) contained 160 ng donor DNA per mg tissue. The total number of infiltrating cells, and the population of CD45+leukocytes, CD4+T-cells, CD8a+cytotoxic T-cells, CD22+B-cells, NCR1+NK-cells, CD68+and CD163+macrophages were quantified on days 5, 15 and 30 after a subcutaneous allogenic (Lewis to Sprague Dawley) transplantation. Gene expression for the pro-inflammatory cytokines INF-γ, IL-1β, IL-2, IL-6 and TNF were also examined. P1 scaffolds triggered an early immune response that may had been negative for tissue regeneration but it was stabilized after 30 d. Conversely, P3 initiated a delayed immune response that appeared negative for scaffold survival. P2 scaffolds were the least immunogenic and remained similar to autologous tissue implants. Hence, an effective decellularization protocol based on a mild detergent was advantageous from an immunological perspective and appears the most promising for futurein vivouterus bioengineering applications.
Collapse
Affiliation(s)
- Arvind Manikantan Padma
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Ahmed Baker Alsheikh
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Min Jong Song
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden.,Department of Obstetrics and Gynecology, Yeouido St Mary's Hospital, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| | - Randa Akouri
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Levent M Akyürek
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Mihai Oltean
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Surgery, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden.,Stockholm IVF-EUGIN, Hammarby allé 93, 120 63, Stockholm, Sweden
| | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| |
Collapse
|
4
|
Motility Improvement of Biomimetic Trachea Scaffold via Hybrid 3D-Bioprinting Technology. Polymers (Basel) 2021; 13:polym13060971. [PMID: 33810007 PMCID: PMC8004939 DOI: 10.3390/polym13060971] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
A trachea has a structure capable of responding to various movements such as rotation of the neck and relaxation/contraction of the conduit due to the mucous membrane and cartilage tissue. However, current reported tubular implanting structures are difficult to impelement as replacements for original trachea movements. Therefore, in this study, we developed a new trachea implant with similar anatomical structure and mechanical properties to native tissue using 3D printing technology and evaluated its performance. A 250 µm-thick layer composed of polycaprolactone (PCL) nanofibers was fabricated on a rotating beam using electrospinning technology, and a scaffold with C-shaped cartilage grooves that mimics the human airway structure was printed to enable reconstruction of cartilage outside the airway. A cartilage type scaffold had a highest rotational angle (254°) among them and it showed up to 2.8 times compared to human average neck rotation angle. The cartilage type showed a maximum elongation of 8 times higher than that of the bellows type and it showed the elongation of 3 times higher than that of cylinder type. In cartilage type scaffold, gelatin hydrogel printed on the outside of the scaffold was remain 22.2% under the condition where no hydrogel was left in other type scaffolds. In addition, after 2 days of breathing test, the amount of gelatin remaining inside the scaffold was more than twice that of other scaffolds. This novel trachea scaffold with hydrogel inside and outside of the structure was well-preserved under external flow and is expected to be advantageous for soft tissue reconstruction of the trachea.
Collapse
|
5
|
Chen Y, Devalliere J, Bulutoglu B, Yarmush ML, Uygun BE. Repopulation of intrahepatic bile ducts in engineered rat liver grafts. TECHNOLOGY 2019; 7:46-55. [PMID: 31388515 PMCID: PMC6684151 DOI: 10.1142/s2339547819500043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Engineered liver grafts for transplantation with sufficient hepatic function have been developed both in small and large animal models using the whole liver engineering approach. However, repopulation of the bile ducts in the whole liver scaffolds has not been addressed yet. In this study, we show the feasibility of repopulating the bile ducts in decellularized rat livers. Biliary epithelial cells were introduced into the bile ducts of the decellularized liver scaffolds with or without hepatocytes in the parenchymal space. The recellularized grafts were cultured under perfusion for up to 2 days and histological analysis revealed that the biliary epithelial cells formed duct-like structures, with the viable hepatocyte mass residing in the parenchymal space, in an arrangement highly comparable to the native tissue. The grafts were viable and functional as confirmed by both albumin and urea assay results and the gene expression analysis of biliary epithelial cells in recellularized liver grafts. This study provides the proof-of-concept results for rat liver grafts co-populated with parenchymal and biliary epithelial cells.
Collapse
Affiliation(s)
- Yibin Chen
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Julie Devalliere
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Beyza Bulutoglu
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Basak E Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| |
Collapse
|
6
|
Al-Daccak R, Charron D. Editorial: Alloimmune Response From Regenerative Medicine. Front Immunol 2019; 9:3121. [PMID: 30713534 PMCID: PMC6345684 DOI: 10.3389/fimmu.2018.03121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/18/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Reem Al-Daccak
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-976, Université Paris-Diderot, Hôpital Saint-Louis, AP-HP, Paris and Labex Transplantex Unistra, Strasbourg, France
| | - Dominique Charron
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-976, Université Paris-Diderot, Hôpital Saint-Louis, AP-HP, Paris and Labex Transplantex Unistra, Strasbourg, France.,Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|