1
|
Flores Carvalho M, Boteon YL, Guarrera JV, Modi PR, Lladó L, Lurje G, Kasahara M, Dutkowski P, Schlegel A. Obstacles to implement machine perfusion technology in routine clinical practice of transplantation: Why are we not there yet? Hepatology 2024; 79:713-730. [PMID: 37013926 DOI: 10.1097/hep.0000000000000394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/05/2023] [Indexed: 04/05/2023]
Abstract
Machine perfusion of solid human organs is an old technique, and the basic principles were presented as early as 1855 by Claude Barnard. More than 50 years ago, the first perfusion system was used in clinical kidney transplantation. Despite the well-known benefits of dynamic organ preservation and significant medical and technical development in the last decades, perfusion devices are still not in routine use. This article describes the various challenges to implement this technology in practice, critically analyzing the role of all involved stakeholders, including clinicians, hospitals, regulatory, and industry, on the background of regional differences worldwide. The clinical need for this technology is discussed first, followed by the current status of research and the impact of costs and regulations. Considering the need for strong collaborations between clinical users, regulatory bodies, and industry, integrated road maps and pathways required to achieve a wider implementation are presented. The role of research development, clear regulatory pathways, and the need for more flexible reimbursement schemes is discussed together with potential solutions to address the most relevant hurdles. This article paints an overall picture of the current liver perfusion landscape and highlights the role of clinical, regulatory, and financial stakeholders worldwide.
Collapse
Affiliation(s)
- Mauricio Flores Carvalho
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, University of Florence, AOU Careggi, Florence, Italy
| | - Yuri L Boteon
- Liver Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - James V Guarrera
- Division of Abdominal Transplant Surgery, Rutgers New Jersey Medical School, Department of Surgery, Newark, New Jersey, USA
| | - Pranjal R Modi
- Department of Transplantation Surgery, Institute of Kidney Diseases and Research Center and Dr. H L Trivedi Institute of Transplantation Sciences (IKDRC-ITS), Ahmedabad, India
| | - Laura Lladó
- Liver Transplant Unit, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Georg Lurje
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mureo Kasahara
- Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Andrea Schlegel
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, University of Florence, AOU Careggi, Florence, Italy
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, 20100 Milan, Italy
| |
Collapse
|
2
|
Ghinolfi D, Dondossola D, Rreka E, Lonati C, Pezzati D, Cacciatoinsilla A, Kersik A, Lazzeri C, Zanella A, Peris A, Maggioni M, Biancofiore G, Reggiani P, Morganti R, De Simone P, Rossi G. Sequential Use of Normothermic Regional and Ex Situ Machine Perfusion in Donation After Circulatory Death Liver Transplant. Liver Transpl 2021; 27:385-402. [PMID: 32949117 DOI: 10.1002/lt.25899] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/11/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
In Italy, 20 minutes of a continuous flat line on an electrocardiogram are required for declaration of death. In the setting of donation after circulatory death (DCD), prolonged warm ischemia time prompted the introduction of abdominal normothermic regional perfusion (NRP) followed by postprocurement ex situ machine perfusion (MP). This is a retrospective review of DCD liver transplantations (LTs) performed at 2 centers using sequential NRP and ex situ MP. From January 2018 to April 2019, 34 DCD donors were evaluated. Three (8.8%) were discarded before NRP, and 11 (32.4%) were discarded based on NRP parameters (n = 1, 3.0%), liver macroscopic appearance at procurement and/or biopsy results (n = 9, 26.5%), or severe macroangiopathy at back-table evaluation (n = 1, 3.0%). A total of 20 grafts (58.8%; 11 uncontrolled DCDs, 9 controlled DCDs) were considered eligible for LT, procured and perfused ex situ (9 normothermic and 11 dual hypothermic MPs). In total, 18 (52.9%; 11 uncontrolled) livers were eventually transplanted. Median (interquartile range) no-flow time was 32.5 (30-39) minutes, whereas median functional warm ischemia time was 52.5 (47-74) minutes (controlled DCD), and median low-flow time was 112 minutes (105-129 minutes; uncontrolled DCD). There was no primary nonfunction, while postreperfusion syndrome occurred in 8 (44%) recipients. Early allograft dysfunction happened in 5 (28%) patients, while acute kidney injury occurred in 5 (28%). After a median follow-up of 15.1 (9.5-22.3) months, 1 case of ischemic-type biliary lesions and 1 patient death were reported. DCD LT is feasible even with the 20-minute no-touch rule. Strict NRP and ex situ MP selection criteria are needed to optimize postoperative results.
Collapse
Affiliation(s)
- Davide Ghinolfi
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università Degli Studi of Milan, Milan, Italy
| | - Erion Rreka
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Pezzati
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Andrea Cacciatoinsilla
- Department of Surgical, Medical, Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Alessia Kersik
- General and Liver Transplant Surgery Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Lazzeri
- Intensive Care Unit and Regional ECMO Referral Center, Emergency Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Alberto Zanella
- Departments of Anesthesia and Critical Care, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università Degli Studi of Milan, Milan, Italy
| | - Adriano Peris
- Intensive Care Unit and Regional ECMO Referral Center, Emergency Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Marco Maggioni
- Pathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Paolo Reggiani
- General and Liver Transplant Surgery Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Paolo De Simone
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Giorgio Rossi
- General and Liver Transplant Surgery Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università Degli Studi of Milan, Milan, Italy
| |
Collapse
|
3
|
Argalious MY. Organ preservation for donation after circulatory death: combining in-situ and ex-situ strategies. Minerva Anestesiol 2020; 86:910-912. [DOI: 10.23736/s0375-9393.20.14735-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Human Red Blood Cells as Oxygen Carriers to Improve Ex-Situ Liver Perfusion in a Rat Model. J Clin Med 2019; 8:jcm8111918. [PMID: 31717387 PMCID: PMC6912657 DOI: 10.3390/jcm8111918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Ex-situ machine perfusion (MP) has been increasingly used to enhance liver quality in different settings. Small animal models can help to implement this procedure. As most normothermic MP (NMP) models employ sub-physiological levels of oxygen delivery (DO2), the aim of this study was to investigate the effectiveness and safety of different DO2, using human red blood cells (RBCs) as oxygen carriers on metabolic recovery in a rat model of NMP. Four experimental groups (n = 5 each) consisted of (1) native (untreated/control), (2) liver static cold storage (SCS) 30 min without NMP, (3) SCS followed by 120 min of NMP with Dulbecco-Modified-Eagle-Medium as perfusate (DMEM), and (4) similar to group 3, but perfusion fluid was added with human RBCs (hematocrit 15%) (BLOOD). Compared to DMEM, the BLOOD group showed increased liver DO2 (p = 0.008) and oxygen consumption ( V O ˙ 2) (p < 0.001); lactate clearance (p < 0.001), potassium (p < 0.001), and glucose (p = 0.029) uptake were enhanced. ATP levels were likewise higher in BLOOD relative to DMEM (p = 0.031). V O ˙ 2 and DO2 were highly correlated (p < 0.001). Consistently, the main metabolic parameters were directly correlated with DO2 and V O ˙ 2. No human RBC related damage was detected. In conclusion, an optimized DO2 significantly reduces hypoxic damage-related effects occurring during NMP. Human RBCs can be safely used as oxygen carriers.
Collapse
|
5
|
Anonymous living donation in liver transplantation: Squaring the circle or condemned to vanish? J Hepatol 2019; 71:864-866. [PMID: 31561912 DOI: 10.1016/j.jhep.2019.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 01/31/2023]
|
6
|
Zeng X, Wang S, Li S, Yang Y, Fang Z, Huang H, Wang Y, Fan X, Ye Q. Hypothermic oxygenated machine perfusion alleviates liver injury in donation after circulatory death through activating autophagy in mice. Artif Organs 2019; 43:E320-E332. [PMID: 31237688 DOI: 10.1111/aor.13525] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
Hypothermic oxygenated machine perfusion (HOPE) is a safe and reliable method that could alleviate liver injury in donation after circulatory death (DCD). This study focuses on the role of autophagy in HOPE's protective effect on DCD liver injury. A 30-minute warm ischemic liver model was established in mice. After 4 hours of cold storage (CS), 1 hour of hypothermic machine perfusion (HMP) with 100% O2 or 100% N2 was employed. During 2 hours of reperfusion, liver tissue and perfusate were collected to evaluate liver function, oxidative stress level, apoptosis, and necrosis. Western blotting was used to explore the level of autophagy. When the liver experienced warm ischemic injury, LC3B-II expression was significantly enhanced. Compared with the CS, HOPE induced lower release of AST and ALT, as well as lower oxidative stress levels, apoptosis, and necrosis cell numbers, and led to higher tissue ATP content. Meanwhile, expression of autophagy-related proteins, such as ULK1, Atg5, and LC3B-II, increased. When oxygen was completely replaced by nitrogen, the washout effect of HMP did not activate autophagy and did not relieve DCD liver injury. When the autophagy inhibitor 3-methyladenine was used in HOPE, the protective effect of HOPE was attenuated. In conclusion, DCD liver injury activated autophagy compared with healthy liver, while HOPE alleviated DCD liver injury by increasing autophagy levels further in this mouse model. However, HMP with 100% of N2 had no beneficial effect on DCD liver injury or on autophagy levels compared with CS. The research on autophagy may provide a new strategy for alleviating DCD liver injury in clinical practice.
Collapse
Affiliation(s)
- Xianpeng Zeng
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Shengjie Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Shiyi Li
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Yunying Yang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Zehong Fang
- The Third General Surgery Department of Jiangxi Provincial People's Hospital, Organ Transplant Department of Jiangxi Provincial People's Hospital, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Honglei Huang
- Nuffield Department of Surgical Sciences, Oxford University, Oxford, United Kingdom
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Xiaoli Fan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China.,Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, The 3rd Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
7
|
Petrenko A, Carnevale M, Somov A, Osorio J, Rodríguez J, Guibert E, Fuller B, Froghi F. Organ Preservation into the 2020s: The Era of Dynamic Intervention. Transfus Med Hemother 2019; 46:151-172. [PMID: 31244584 PMCID: PMC6558325 DOI: 10.1159/000499610] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Organ preservation has been of major importance ever since transplantation developed into a global clinical activity. The relatively simple procedures were developed on a basic comprehension of low-temperature biology as related to organs outside the body. In the past decade, there has been a significant increase in knowledge of the sequelae of effects in preserved organs, and how dynamic intervention by perfusion can be used to mitigate injury and improve the quality of the donated organs. The present review focuses on (1) new information about the cell and molecular events impacting on ischemia/reperfusion injury during organ preservation, (2) strategies which use varied compositions and additives in organ preservation solutions to deal with these, (3) clear definitions of the developing protocols for dynamic organ perfusion preservation, (4) information on how the choice of perfusion solutions can impact on desired attributes of dynamic organ perfusion, and (5) summary and future horizons.
Collapse
Affiliation(s)
- Alexander Petrenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine, Ukraine Academy of Sciences, Kharkov, Ukraine
| | - Matias Carnevale
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alexander Somov
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine, Ukraine Academy of Sciences, Kharkov, Ukraine
| | - Juliana Osorio
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, Argentina
| | - Joaquin Rodríguez
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, Argentina
| | - Edgardo Guibert
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Barry Fuller
- UCL Division of Surgery and Interventional Sciences, Royal Free Hospital, London, United Kingdom
| | - Farid Froghi
- UCL Division of Surgery and Interventional Sciences, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
8
|
Liver Perfusate Natural Killer Cells From Deceased Brain Donors and Association With Acute Cellular Rejection After Liver Transplantation: A Time-to-Rejection Analysis. Transplantation 2019; 103:371-380. [DOI: 10.1097/tp.0000000000002322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Quintini C, Martins PN, Shah S, Killackey M, Reed A, Guarrera J, Axelrod DA. Implementing an innovated preservation technology: The American Society of Transplant Surgeons' (ASTS) Standards Committee White Paper on Ex Situ Liver Machine Perfusion. Am J Transplant 2018; 18:1865-1874. [PMID: 29791060 DOI: 10.1111/ajt.14945] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/15/2018] [Accepted: 05/15/2018] [Indexed: 01/25/2023]
Abstract
The pervasive shortage of deceased donor liver allografts contributes to significant waitlist mortality despite efforts to increase organ donation. Ex vivo liver perfusion appears to enhance preservation of donor organs, extending viability and potentially evaluating function in organs previously considered too high risk for transplant. These devices pose novel challenges for organ allocation, safety, training, and finances. This white paper describes the American Society of Transplant Surgeons' belief that organ preservation technology is a vital advance, but its use should not change fundamental aspects of organ allocation. Additional data elements need to be collected, made available for organ assessment by transplant professionals to allow determination of organ suitability in the case of reallocation and incorporated into risk adjustment methodology. Finally, further work is needed to determine the optimal strategy for management and oversight of perfused organs prior to transplantation.
Collapse
Affiliation(s)
| | | | - Shimul Shah
- University of Cincinnati, Cincinnati, OH, USA
| | - Mary Killackey
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Alan Reed
- University of Iowa, Iowa City, IA, USA
| | | | | | | |
Collapse
|
10
|
Preliminary Experience With Hypothermic Oxygenated Machine Perfusion in an Italian Liver Transplant Center. Transplant Proc 2018; 51:111-116. [PMID: 30736971 DOI: 10.1016/j.transproceed.2018.04.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Machine perfusion is increasingly utilized in liver transplantation to face the detrimental consequences of the use of extended-criteria donors. Hypothermic oxygenated machine perfusion (HOPE) appears to be more protective relative to static cold storage. Conversely, normothermic machine perfusion (NMP) allows a better graft evaluation. We describe a pilot prospective study on machine perfusion in selected grafts. METHODS HOPE was executed for all the grafts procured from donors after cardiac death (DCDs) and for livers from donors after brain death (DBDs) requiring prolonged preservation time. NMP was used when a more precise evaluation was needed. Both HOPE and NMP were performed through the portal vein and hepatic artery. RESULTS From July 2016 to November 2017, we performed 7 HOPE procedures: 5 for DCD and 2 for DBD grafts. Two livers presented with macrovesicular steatosis >30% (1 DCD and 1 DBD). HOPE lasted 240 minutes (180-320 min) with a total ischemia time of 575 minutes (410-810 min). Six grafts were successfully transplanted. One DCD graft required additional evaluation using NMP. The graft was then discarded due to extensive hepatocellular necrosis. In the post-transplant course, acute and chronic renal failure were the main complications affecting 3 and 2 recipients, respectively. In our series, steatosis was the main risk factor for kidney injury. Patient and graft survival rate was 100% and no ischemic cholangiopathies were observed after 270 days (106-582 days). CONCLUSIONS Our study confirms HOPE safety and efficacy for DCD and DBD grafts. These data are particularly significant for DCD management in the Italian setting where the mandatory 20-minute hands-off interval before death declaration further prolongs warm ischemia time.
Collapse
|
11
|
Ghinolfi D, Rreka E, Pezzati D, Filipponi F, De Simone P. Perfusion machines and hepatocellular carcinoma: a good match between a marginal organ and an advanced disease? Transl Gastroenterol Hepatol 2017; 2:87. [PMID: 29264425 DOI: 10.21037/tgh.2017.10.01] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for 90% of primary liver cancers, is the second leading cause of cancer-related deaths and the leading cause of death in patients with cirrhosis. Liver transplantation (LT) represents the ideal treatment for selected patients as it removes both the tumor and the underlying cirrhotic liver with 5-year survival rates higher than 70%. Unfortunately, due to tumor characteristics, patient co-morbidities or shortage of organs available for transplant, only 20% of patients can undergo curative treatment. Ex situ machine perfusion (MP) is a technology recently introduced that might potentially improve organ preservation, allow graft assessment and increase the pool of available organs. The purpose of this review is to provide an update on the current role of ex situ liver MP in liver transplantation for HCC patients.
Collapse
Affiliation(s)
- Davide Ghinolfi
- Division of Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Tuscany, Italy
| | - Erion Rreka
- Division of Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Tuscany, Italy
| | - Daniele Pezzati
- Division of Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Tuscany, Italy
| | - Franco Filipponi
- Division of Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Tuscany, Italy
| | - Paolo De Simone
- Division of Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Tuscany, Italy
| |
Collapse
|