1
|
Aburahma K, de Manna ND, Kuehn C, Salman J, Greer M, Ius F. Pushing the Survival Bar Higher: Two Decades of Innovation in Lung Transplantation. J Clin Med 2024; 13:5516. [PMID: 39337005 PMCID: PMC11432129 DOI: 10.3390/jcm13185516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Survival after lung transplantation has significantly improved during the last two decades. The refinement of the already existing extracorporeal life support (ECLS) systems, such as extracorporeal membrane oxygenation (ECMO), and the introduction of new techniques for donor lung optimization, such as ex vivo lung perfusion (EVLP), have allowed the extension of transplant indication to patients with end-stage lung failure after acute respiratory distress syndrome (ARDS) and the expansion of the donor organ pool, due to the better evaluation and optimization of extended-criteria donor (ECD) lungs and of donors after circulatory death (DCD). The close monitoring of anti-HLA donor-specific antibodies (DSAs) has allowed the early recognition of pulmonary antibody-mediated rejection (AMR), which requires a completely different treatment and has a worse prognosis than acute cellular rejection (ACR). As such, the standardization of patient selection and post-transplant management has significantly contributed to this positive trend, especially at high-volume centers. This review focuses on lung transplantation after ARDS, on the role of EVLP in lung donor expansion, on ECMO as a principal cardiopulmonary support system in lung transplantation, and on the diagnosis and therapy of pulmonary AMR.
Collapse
Affiliation(s)
- Khalil Aburahma
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Nunzio Davide de Manna
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Christian Kuehn
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
| | - Jawad Salman
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
| | - Mark Greer
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, 30625 Hannover, Germany
| | - Fabio Ius
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
| |
Collapse
|
2
|
Bansal S, Arjuna A, Franz B, Guerrero-Alba A, Canez J, Fleming T, Rahman M, Hachem R, Mohanakumar T. Extracellular vesicles: a potential new player in antibody-mediated rejection in lung allograft recipients. FRONTIERS IN TRANSPLANTATION 2023; 2:1248987. [PMID: 38993876 PMCID: PMC11235353 DOI: 10.3389/frtra.2023.1248987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/22/2023] [Indexed: 07/13/2024]
Abstract
Identification of recipients with pre-existing antibodies and cross-matching of recipient sera with donor lymphocytes have reduced the incidence of antibody-mediated rejection (AMR) after human lung transplantation. However, AMR is still common and requires not only immediate intervention but also has long-term consequences including an increased risk of chronic lung allograft dysfunction (CLAD). The mechanisms resulting in AMR remain largely unknown due to the variation in clinical and histopathological features among lung transplant recipients; however, several reports have demonstrated a strong association between the development of antibodies against mismatched donor human leucocyte antigens [donor-specific antibodies (DSAs)] and AMR. In addition, the development of antibodies against lung self-antigens (K alpha1 tubulin and collagen V) also plays a vital role in AMR pathogenesis, either alone or in combination with DSAs. In the current article, we will review the existing literature regarding the association of DSAs with AMR, along with clinical diagnostic features and current treatment options for AMR. We will also discuss the role of extracellular vesicles (EVs) in the immune-related pathogenesis of AMR, which can lead to CLAD.
Collapse
Affiliation(s)
- Sandhya Bansal
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Ashwini Arjuna
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Brian Franz
- HLA Laboratory, Vitalant, Phoenix, AZ, United States
| | - Alexa Guerrero-Alba
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Jesse Canez
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Mohammad Rahman
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Ramsey Hachem
- Department of Surgery, Washington University, St. Louis, MO, United States
| | - T. Mohanakumar
- Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
3
|
Sharma D, Sharma N, Subramaniam KG. Curbing Proteastasis to Combat Antibody-Mediated Rejection Post Lung Transplant. INDIAN JOURNAL OF TRANSPLANTATION 2023; 17:12-15. [DOI: 10.4103/ijot.ijot_33_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/30/2023] [Indexed: 04/03/2023] Open
Abstract
Lung transplantation (LTx) has emerged as the treatment of choice for patients suffering from end-stage lung disease all over the past 35 years. Despite ameliorated early survival with a median survival of 6.5 years, its long-term outcomes are dissatisfactory. Although antibody-mediated rejection (AMR) remained “the Achilles heel of LTx,” yet we have not attained consensus on the optimal therapeutic approach. The aim of this review article is to address the upcoming role of proteasome inhibitor drugs in managing AMR post-LTx.
Collapse
Affiliation(s)
- Dhruva Sharma
- Department of Cardiothoracic and Vascular Surgery, SMS Medical College and Attached Hospitals, Jaipur, Rajasthan, India
| | - Neha Sharma
- Department of Pharmacology, SMS Medical College and Attached Hospitals, Jaipur, Rajasthan, India
| | - Krishnan Ganapathy Subramaniam
- Department of Cardiothoracic and Vascular Surgery, Sri Padmavathi Children Heart Centre, Tirupati, Andhra Pradesh, India
| |
Collapse
|
4
|
Sharma D, Krishnan GS, Sharma N, Chandrashekhar A. Current perspective of immunomodulators for lung transplant. Indian J Thorac Cardiovasc Surg 2022; 38:497-505. [PMID: 36050971 PMCID: PMC9424406 DOI: 10.1007/s12055-022-01388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Lung transplantation is an effective treatment option for selected patients suffering from end-stage lung disease. More intensive immunosuppression is enforced after lung transplants owing to a greater risk of rejection than after any other solid organ transplants. The commencing of lung transplantation in the modern era was in 1983 when the Toronto Lung Transplant Group executed the first successful lung transplant. A total of 43,785 lung transplants and 1365 heart-lung transplants have been performed from 1 Jan 1988 until 31 Jan 2021. The aim of this review article is to discuss the existing immunosuppressive strategies and emerging agents to prevent acute and chronic rejection in lung transplantation.
Collapse
Affiliation(s)
- Dhruva Sharma
- Department of Cardiothoracic and Vascular Surgery, SMS Medical College & Attached Hospitals, J L N Marg, Jaipur, 302001 Rajasthan India
| | - Ganapathy Subramaniam Krishnan
- Institute of Heart and Lung Transplant and Mechanical Circulatory Support, MGM Healthcare, No. 72, Nelson Manickam Road, Aminjikarai, Chennai, 600029 Tamil Nadu India
| | - Neha Sharma
- Department of Pharmacology, SMS Medical College & Attached Hospitals, J L N Marg, Jaipur, 302001 Rajasthan India
| | - Anitha Chandrashekhar
- Institute of Heart and Lung Transplant and Mechanical Circulatory Support, MGM Healthcare, No. 72, Nelson Manickam Road, Aminjikarai, Chennai, 600029 Tamil Nadu India
| |
Collapse
|
5
|
Targeting CD38 in Neoplasms and Non-Cancer Diseases. Cancers (Basel) 2022; 14:cancers14174169. [PMID: 36077708 PMCID: PMC9454480 DOI: 10.3390/cancers14174169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023] Open
Abstract
Simple Summary CD38 remains an interesting target for anticancer therapy. Its relatively high abundance in neoplasms and crucial impact on NAD+/cADPR metabolism and the activity of T cells allows for changing the immune response in autoimmune diseases, neoplasms, and finally the induction of cell death. Antibody-dependent cell cytotoxicity is responsible for cell death induced by targeting the tumor with anti-CD38 antibodies, such as daratumumab. A wide range of laboratory experiments and clinical trials show an especially promising role of anti-CD38 therapy against multiple myeloma, NK cell lymphomas, and CD19- B-cell malignancies. More studies are required to include more diseases in the therapeutic protocols involving the modulation of CD38 activity. Abstract CD38 is a myeloid antigen present both on the cell membrane and in the intracellular compartment of the cell. Its occurrence is often enhanced in cancer cells, thus making it a potential target in anticancer therapy. Daratumumab and isatuximab already received FDA approval, and novel agents such as MOR202, TAK079 and TNB-738 undergo clinical trials. Also, novel therapeutics such as SAR442085 aim to outrank the older antibodies against CD38. Multiple myeloma and immunoglobulin light-chain amyloidosis may be effectively treated with anti-CD38 immunotherapy. Its role in other hematological malignancies is also important concerning both diagnostic process and potential treatment in the future. Aside from the hematological malignancies, CD38 remains a potential target in gastrointestinal, neurological and pulmonary system disorders. Due to the strong interaction of CD38 with TCR and CD16 on T cells, it may also serve as the biomarker in transplant rejection in renal transplant patients. Besides, CD38 finds its role outside oncology in systemic lupus erythematosus and collagen-induced arthritis. CD38 plays an important role in viral infections, including AIDS and COVID-19. Most of the undergoing clinical trials focus on the use of anti-CD38 antibodies in the therapy of multiple myeloma, CD19- B-cell malignancies, and NK cell lymphomas. This review focuses on targeting CD38 in cancer and non-cancerous diseases using antibodies, cell-based therapies and CD38 inhibitors. We also provide a summary of current clinical trials targeting CD38.
Collapse
|
6
|
Michel E, Galen Hartwig M, Sommer W. Lung Retransplantation. Thorac Surg Clin 2022; 32:259-268. [PMID: 35512943 DOI: 10.1016/j.thorsurg.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lung retransplantation remains the standard treatment of irreversible lung allograft failure. The most common indications for lung retransplantation are acute graft failure, chronic lung allograft dysfunction, and postoperative airway complications. Careful patient selection with regards to indications, anatomy, extrapulmonary organ dysfunction (specifically renal dysfunction), and immunologic consideration are of utmost importance. The conduct of the lung retransplantation operation is arduous with special considerations given to operative approach, type of surgery (single vs bilateral), use of extracorporeal circulatory support, and hematological management. Outcomes have improved significantly for most patients, nearing short and midterm outcomes of primary lung recipients in select cases.
Collapse
Affiliation(s)
- Eriberto Michel
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Cox 630, Boston, MA 02114, USA
| | - Matthew Galen Hartwig
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University School of Medicine, DUMC 3863, Durham, NC 27710, USA.
| | - Wiebke Sommer
- Department of Cardiac Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Kotecha S, Ivulich S, Snell G. Review: immunosuppression for the lung transplant patient. J Thorac Dis 2022; 13:6628-6644. [PMID: 34992841 PMCID: PMC8662512 DOI: 10.21037/jtd-2021-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/16/2021] [Indexed: 12/19/2022]
Abstract
Lung transplantation (LTx) has evolved significantly since its inception and the improvement in LTx outcomes over the last three decades has predominantly been driven by advances in immunosuppression management. Despite the lack of new classes of immunosuppression medications, immunosuppressive strategies have evolved significantly from a universal method to a more targeted approach, reflecting a greater understanding of the need for individualized therapy and careful consideration of all factors that are influenced by immunosuppression choice. This has become increasingly important as the demographics of lung transplant recipients have changed over time, with older and more medically complex candidates being accepted and undergoing LTx. Furthermore, improved survival post lung transplant has translated into more immunosuppression related comorbidities long-term, predominantly chronic kidney disease (CKD) and malignancy, which has required further nuanced management approaches. This review provides an update on current traditional lung transplant immunosuppression strategies, with modifications based on pre-existing recipient factors and comorbidities, peri-operative challenges and long term complications, balanced against the perpetual challenge of chronic lung allograft dysfunction (CLAD). As we continue to explore and understand the complexity of LTx immunology and the interplay of different factors, immunosuppression strategies will require ongoing critical evaluation and personalization in order to continue to improve lung transplant outcomes.
Collapse
Affiliation(s)
- Sakhee Kotecha
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Australia
| | - Steven Ivulich
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Australia
| | - Gregory Snell
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Australia
| |
Collapse
|
8
|
Daratumumab for Antibody-mediated Rejection in Heart Transplant-A Novel Therapy: Successful Treatment of Antibody-mediated Rejection. Transplantation 2021; 105:e30-e31. [PMID: 33617204 DOI: 10.1097/tp.0000000000003505] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Ejaz K, Roback JD, Stowell SR, Sullivan HC. Daratumumab: Beyond Multiple Myeloma. Transfus Med Rev 2021; 35:36-43. [PMID: 34312046 DOI: 10.1016/j.tmrv.2021.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/01/2022]
Abstract
Daratumumab (DARA) is the biological name of an Immunoglobulin G1k human monoclonal antibody. DARA the first-in-class therapy targeting CD38 expressing- plasma cells (PC) and plasma blasts. It has been approved for the treatment of multiple myeloma. It is also being examined in the setting of other hematologic malignancies. As DARA targets PCs, it could potentially be used to treat many other disease processes that are antibody mediated. In fact, several case reports and case series report experiences of using DARA to treat a variety of antibody-mediated disorderss. The aim of this review is to present a summary of the literature thus far regarding the application of DARA beyond its uses in multiple myeloma and other hematologic diseases. Specifically, we address uses of DARA as an immunologic modulator in various antibody mediated processes.
Collapse
Affiliation(s)
- Kiran Ejaz
- Department of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - John D Roback
- Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sean R Stowell
- Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Harold C Sullivan
- Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Assessment of Carfilzomib Treatment Response in Lung Transplant Recipients With Antibody-mediated Rejection. Transplant Direct 2021; 7:e680. [PMID: 33748409 PMCID: PMC7969244 DOI: 10.1097/txd.0000000000001131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/31/2023] Open
Abstract
Supplemental Digital Content is available in the text. Data supporting the use of carfilzomib (CFZ) for treatment of antibody-mediated rejection (AMR) in lung transplantation in combination with plasmapheresis and intravenous immunoglobulin suggest positive outcomes through donor-specific antibody (DSA) depletion or conversion to noncomplement-activating antibodies. Herein, we describe our center’s experience treating AMR with CFZ.
Collapse
|
11
|
Timofeeva OA, Choe J, Alsammak M, Yoon EJ, Geier SS, Mathew L, McCollick A, Carney K, Au J, Diamond A, Galli JA, Shenoy K, Mamary A, Sehgal S, Mulhall P, Toyoda Y, Shigemura N, Cordova F, Criner G, Brown JC. Guiding therapeutic plasma exchange for antibody-mediated rejection treatment in lung transplant recipients - a retrospective study. Transpl Int 2021; 34:700-708. [PMID: 33469943 DOI: 10.1111/tri.13825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 11/29/2022]
Abstract
Antibody-Mediated Rejection (AMR) due to donor-specific antibodies (DSA) is associated with poor outcomes after lung transplantation. Currently, there are no guidelines regarding the selection of treatment protocols. We studied how DSA characteristics including titers, C1q, and mean fluorescence intensity (MFI) values in undiluted and diluted sera may predict a response to therapeutic plasma exchange (TPE) and inform patient prognosis after treatment. Among 357 patients consecutively transplanted without detectable pre-existing DSAs between 01/01/16 and 12/31/18, 10 patients were treated with a standardized protocol of five TPE sessions with IVIG. Based on DSA characteristics after treatment, all patients were divided into three groups as responders, partial responders, and nonresponders. Kaplan-Meier Survival analyses showed a statistically significant difference in patient survival between those groups (P = 0.0104). Statistical analyses showed that MFI in pre-TPE 1:16 diluted sera was predictive of a response to standardized protocol (R2 = 0.9182) and patient survival (P = 0.0098). Patients predicted to be nonresponders who underwent treatment with a more aggressive protocol of eight TPE sessions with IVIG and bortezomib showed improvements in treatment response (P = 0.0074) and patient survival (P = 0.0253). Dilutions may guide clinicians as to which patients would be expected to respond to a standards protocol or require more aggressive treatment.
Collapse
Affiliation(s)
- Olga A Timofeeva
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Georgetown University School of Medicine, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Jason Choe
- Department of Pharmacy Services, Temple University Hospital, Philadelphia, PA, USA
| | - Mohamed Alsammak
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Edward J Yoon
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Steven S Geier
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Leena Mathew
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Amanda McCollick
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Kevin Carney
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jenny Au
- Department of Pharmacy Services, Temple University Hospital, Philadelphia, PA, USA
| | - Adam Diamond
- Department of Pharmacy Services, Temple University Hospital, Philadelphia, PA, USA
| | - Jonathan A Galli
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Kartik Shenoy
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Albert Mamary
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Sameep Sehgal
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Patrick Mulhall
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Yoshiya Toyoda
- Department of Surgery, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Norihisa Shigemura
- Department of Surgery, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Francis Cordova
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Gerald Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - James C Brown
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
12
|
Grazioli A, Athale J, Tanaka K, Madathil R, Rabin J, Kaczorowski D, Mazzeffi M. Perioperative Applications of Therapeutic Plasma Exchange in Cardiac Surgery: A Narrative Review. J Cardiothorac Vasc Anesth 2020; 34:3429-3443. [DOI: 10.1053/j.jvca.2020.01.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/26/2020] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
|
13
|
Morillas JA, Marco Canosa F, Srinivas P, Asadi T, Calabrese C, Rajendram P, Budev M, Poggio ED, Narayanan Menon K, Gastman B, Koval C. Tocilizumab therapy in 5 solid and composite tissue transplant recipients with early ARDS due to SARS-CoV-2. Am J Transplant 2020; 20:3191-3197. [PMID: 32476261 PMCID: PMC7300992 DOI: 10.1111/ajt.16080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 01/25/2023]
Abstract
There are emerging data depicting the clinical presentation of coronavirus disease 19 (COVID-19) in solid organ transplant recipients but negligible data-driven guidance on clinical management. A biphasic course has been described in some infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), beginning with a flu-like illness followed by an intense inflammatory response characterized by elevated c-reactive protein (CRP), interleukin 6 (IL-6), and acute respiratory distress syndrome (ARDS) associated with high mortality. The exuberant and possibly dysregulated immune response has prompted interest in therapeutic agents that target the cytokines involved, particularly IL-6. Tocilizumab is an IL-6 receptor antagonist with a record of use for a variety of rheumatologic conditions and cytokine release syndrome due to chimeric antigen receptor T-cell therapy but experience in solid organ and composite tissue transplant recipients (SOT/CTTRs) with SARS-CoV-2-related ARDS has not been previously reported in detail. We present the clinical course of 5 SOT/CTTRs with SARS-CoV-2-related ARDS that received tocilizumab with favorable short-term outcomes in 4. Responses were characterized by reductions in CRP, discontinuation of vasopressors, improved oxygenation and respiratory mechanics, and variable duration of ventilator support. Four bacterial infections occurred within 2 weeks of tocilizumab administration. We discuss safety concerns and the need for randomized comparative trials to delineate tocilizumab's clinical utility in this population.
Collapse
Affiliation(s)
- Jose A. Morillas
- Department of Infectious Diseases, Cleveland Clinic, Cleveland, Ohio,Correspondence Jose A. Morillas
| | | | | | - Tannaz Asadi
- Department of Infectious Diseases, Hillcrest Hospital, Cleveland, Ohio
| | | | | | - Marie Budev
- Department of Pulmonary Medicine, Cleveland Clinic, Cleveland, Ohio,Transplantation Center, Cleveland Clinic, Cleveland, Ohio
| | - Emilio D. Poggio
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio,Transplantation Center, Cleveland Clinic, Cleveland, Ohio
| | - K.V. Narayanan Menon
- Department of Hepatology, Cleveland Clinic, Cleveland, Ohio,Transplantation Center, Cleveland Clinic, Cleveland, Ohio
| | - Brian Gastman
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio,Transplantation Center, Cleveland Clinic, Cleveland, Ohio
| | - Christine Koval
- Department of Infectious Diseases, Cleveland Clinic, Cleveland, Ohio,Transplantation Center, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
14
|
Evolving Role of Daratumumab: From Backbencher to Frontline Agent. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:572-587. [DOI: 10.1016/j.clml.2020.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/08/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
|
15
|
Parquin F, Cuquemelle E, Camps E, Devaquet J, Phillips Houllbracq M, Sage E, Brugière O, Le Guen M, Longchampt E, Malard S, Picard C, Taupin JL, Roux A. C1-esterase inhibitor treatment for antibody-mediated rejection after lung transplantation: two case reports. Eur Respir J 2020; 55:13993003.02027-2019. [PMID: 32079639 DOI: 10.1183/13993003.02027-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Eve Camps
- Pharmacy Dept, Foch Hospital, Suresnes, France
| | | | | | - Edouard Sage
- Thoracic Surgery Dept, Foch Hospital, Suresnes, France.,Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - Olivier Brugière
- Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Dept, Foch Hospital, Suresnes, France
| | - Morgan Le Guen
- Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France.,Anesthesiology Dept, Foch Hospital, Suresnes, France
| | | | - Stéphanie Malard
- Laboratoire Régional d'Histocompatibilité, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Jean Luc Taupin
- Laboratoire Régional d'Histocompatibilité, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Roux
- Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France.,Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Dept, Foch Hospital, Suresnes, France
| | | |
Collapse
|