1
|
Sartoneva R, Paakinaho K, Hannula M, Kuismanen K, Huhtala H, Hyttinen J, Miettinen S. Ascorbic Acid 2-Phosphate Releasing Supercritically Foamed Porous Poly-L-Lactide-Co-ε-Caprolactone Scaffold Enhances the Collagen Production of Human Vaginal Stromal Cells: A New Approach for Vaginal Tissue Engineering. Tissue Eng Regen Med 2024; 21:81-96. [PMID: 37907765 PMCID: PMC10764701 DOI: 10.1007/s13770-023-00603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND The reconstructive surgery of vaginal defects is highly demanding and susceptible to complications, especially in larger defects requiring nonvaginal tissue grafts. Thus, tissue engineering-based solutions could provide a potential approach to the reconstruction of vaginal defects. METHODS Here, we evaluated a novel porous ascorbic acid 2-phosphate (A2P)-releasing supercritical carbon dioxide foamed poly-L-lactide-co-ε-caprolactone (scPLCLA2P) scaffold for vaginal reconstruction with vaginal epithelial (EC) and stromal (SC) cells. The viability, proliferation, and phenotype of ECs and SCs were evaluated in monocultures and in cocultures on d 1, d 7 and d 14. Furthermore, the collagen production of SCs on scPLCLA2P was compared to that on scPLCL without A2P on d 14. RESULTS Both ECs and SCs maintained their viability on the scPLCLA2P scaffold in mono- and coculture conditions, and the cells maintained their typical morphology during the 14-d culture period. Most importantly, the scPLCLA2P scaffolds supported the collagen production of SCs superior to plain scPLCL based on total collagen amount, collagen I and III gene expression results and collagen immunostaining results. CONCLUSION This is the first study evaluating the effect of A2P on vaginal tissue engineering, and the results are highly encouraging, indicating that scPLCLA2P has potential as a scaffold for vaginal tissue engineering.
Collapse
Affiliation(s)
- Reetta Sartoneva
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland.
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland.
- Department of Obstetrics and Gynaecology, Seinäjoki Central Hospital, Seinäjoki, Finland.
| | - Kaarlo Paakinaho
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Markus Hannula
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Kirsi Kuismanen
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Department of Obstetrics and Gynaecology, Tampere University Hospital, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - Jari Hyttinen
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Susanna Miettinen
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| |
Collapse
|
2
|
Xue J, Liu Y. Mesenchymal Stromal/Stem Cell (MSC)-Based Vector Biomaterials for Clinical Tissue Engineering and Inflammation Research: A Narrative Mini Review. J Inflamm Res 2023; 16:257-267. [PMID: 36713049 PMCID: PMC9875582 DOI: 10.2147/jir.s396064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have the ability of self-renewal, the potential of multipotent differentiation, and a strong paracrine capacity, which are mainly used in the field of clinical medicine including dentistry and orthopedics. Therefore, tissue engineering research using MSCs as seed cells is a current trending directions. However, the healing effect of direct cell transplantation is unstable, and the paracrine/autocrine effects of MSCs cannot be effectively elicited. Tumorigenicity and heterogeneity are also concerns. The combination of MSCs as seed cells and appropriate vector materials can form a stable cell growth environment, maximize the secretory features of stem cells, and improve the biocompatibility and mechanical properties of vector materials that facilitate the delivery of drugs and various secretory factors. There are numerous studies on tissue engineering and inflammation of various biomaterials, mainly involving bioceramics, alginate, chitosan, hydrogels, cell sheets, nanoparticles, and three-dimensional printing. The combination of bioceramics, hydrogels and cell sheets with stem cells has demonstrated good therapeutic effects in clinical applications. The application of alginate, chitosan, and nanoparticles in animal models has also shown good prospects for clinical applications. Three-dimensional printing technology can circumvent the shortage of biomaterials, greatly improve the properties of vector materials, and facilitate the transplantation of MSCs. The purpose of this narrative review is to briefly discuss the current use of MSC-based carrier biomaterials to provide a useful resource for future tissue engineering and inflammation research using stem cells as seed cells.
Collapse
Affiliation(s)
- Junshuai Xue
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Yang Liu
- Department of General Surgery, Vascular Surgery, Qilu Hospital of Shandong University, Jinan City, People’s Republic of China,Correspondence: Yang Liu, Department of General surgery, Vascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China, Tel +86 18560088317, Email
| |
Collapse
|
3
|
Serinçay H, Güler HU, Ulubayram K, Mangır N. A scoping review of tissue interposition flaps used in vesicovaginal fistulae repair. Ther Adv Urol 2023; 15:17562872231182217. [PMID: 37434758 PMCID: PMC10331086 DOI: 10.1177/17562872231182217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Background Research on the use of tissue interposition flaps (TIFs) in vesicovaginal fistulae (VVF) repair is a broad area where a very wide range of natural and synthetic materials have been used. The occurrence of VVF is also diverse in the social and clinical settings, resulting in a parallel heterogeneity in the published literature on its treatment. The use of synthetic and autologous TIFs in VVF repair is not yet standardized with a lack of the most efficacious type and technique of the TIF. Objectives The aim of this study was to systematically review all synthetic and autologous TIFs used in the surgical repair of VVFs. Data sources and methods In this scoping review, the surgical outcomes of autologous and synthetic interposition flaps used in VVF treatment meeting the inclusion criteria were determined. We searched the literature using Ovid MEDLINE and PubMed databases between 1974 and 2022. Study characteristics were recorded, and data on the change in fistulae size and location, surgical approach, success rate, preoperative patient evaluation and outcome evaluation were extracted from each study independently by two authors. Results A total of 25 articles that met the inclusion criteria were included in the final analysis. A total of 943 and 127 patients who had received autologous and synthetic flaps, respectively, were included in this scoping review. The fistulae characteristics were highly variable with regard to their size, complexity, aetiology, location and radiation. Outcome assessments of fistulae repair in included studies were mostly based on symptom evaluation. Physical examination, cystogram and methylene blue test were the methods in order of preference. Postoperative complications, such as infection, bleeding, donor site, pain, voiding dysfunction and other complications, were reported in patients after fistulae repair in all included studies. Conclusion The use of TIFs in VVF repair was common especially in complex and large fistulae. Autologous TIFs appear to be the standard of care at the moment, and synthetic TIFs were investigated in prospective clinical trials in a limited number of selected cases. Evidence levels of clinical studies evaluating the effectiveness of interposition flaps were overall low.
Collapse
Affiliation(s)
- Halime Serinçay
- Bioengineering Division, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
| | - Hayrullah Uğur Güler
- Department of Urology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Kezban Ulubayram
- Bioengineering Division, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Naşide Mangır
- Department of Urology, Faculty of Medicine, Hacettepe University, 06532 Ankara, Turkey
| |
Collapse
|
4
|
MIL-101 (Fe) @Ag Rapid Synergistic Antimicrobial and Biosafety Evaluation of Nanomaterials. Molecules 2022; 27:molecules27113497. [PMID: 35684436 PMCID: PMC9182184 DOI: 10.3390/molecules27113497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
Metal-organic frameworks (MOFs), which have become popular in recent years as excellent carriers of drugs and biomimetic materials, have provided new research ideas for fighting pathogenic bacterial infections. Although various antimicrobial metal ions can be added to MOFs with physical methods, such as impregnation, to inhibit bacterial multiplication, this is inefficient and has many problems, such as an uneven distribution of antimicrobial ions in the MOF and the need for the simultaneous addition of large doses of metal ions. Here, we report on the use of MIL-101(Fe)@Ag with efficient metal-ion release and strong antimicrobial efficiency for co-sterilization. Fe-based MIL-101(Fe) was synthesized, and then Ag+ was uniformly introduced into the MOF by the substitution of Ag+ for Fe3+. Scanning electron microscopy, powder X-ray diffraction (PXRD) Fourier transform infrared spectroscopy, and thermogravimetric analysis were used to investigate the synthesized MIL-101(Fe)@Ag. The characteristic peaks of MIL-101(Fe) and silver ions could be clearly seen in the PXRD pattern. Comparing the diffraction peaks of the simulated PXRD patterns clearly showed that MIL-101(Fe) was successfully constructed and silver ions were successfully loaded into MIL-101(Fe) to synthesize an MOF with a bimetallic structure, that is, the target product MIL-101(Fe)@Ag. The antibacterial mechanism of the MOF material was also investigated. MIL-101(Fe)@Ag exhibited low cytotoxicity, so it has potential applications in the biological field. Overall, MIL-101(Fe)@Ag is an easily fabricated structurally engineered nanocomposite with broad-spectrum bactericidal activity.
Collapse
|
5
|
Wang X, Chen Y, Fan Z, Hua K. Evaluating tissue-engineered repair material for pelvic floor dysfunction: a comparison of in vivo response to meshes implanted in rats. Int Urogynecol J 2021; 33:2143-2150. [PMID: 34741620 DOI: 10.1007/s00192-021-05008-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Achieving better anatomic restoration and decreasing the associated complications are necessary for material repair of pelvic floor dysfunction (PFD). This study was aimed to investigate host response to tissue-engineered repair material (TERM) in rat models by comparing different materials and study the changes in biomechanical properties over time. METHODS TERM was constructed by seeding adipose-derived stem cells (ADSCs) on electrospun poly(L-lactide)-trimethylene carbonate-glycolide (PLTG) terpolymers. The TERM, PLTG, porcine small intestine submucosa mesh (SIS), and polypropylene (PP) (n = 6 / group per time point) were implanted in rats for 7, 30, 60, and 90 days. Hematoxylin-eosin and Masson's trichrome staining were used to assess the host response, and mechanical testing was used to evaluate the changes in biomechanical properties. RESULTS In vivo imaging showed that the ADSCs were confined to the abdominal wall and did not migrate to other organs or tissues. The TERM was encapsulated by a thicker layer of connective tissue and was associated with less reduced inflammatory scores compared with PLTG and PP over time. The vascularization of the TERM was greater than that with PP and PLTG over time (p < 0.05) and was greater than that with SIS on day 90. The ultimate tensile strain and Young's modulus of the PP group showed the greatest increases, and the TERM group followed on day 90. CONCLUSIONS This TERM achieved better host integration in rat models and better biomechanical properties, and it may be an alternative material for PFD.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 128 Shenyang Road, Shanghai, 200090, People's Republic of China
| | - Yisong Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 128 Shenyang Road, Shanghai, 200090, People's Republic of China
| | - Zhongyong Fan
- Department of Materials Science, Fudan University, No. 220 Handan Road, Shanghai, 200433, People's Republic of China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 128 Shenyang Road, Shanghai, 200090, People's Republic of China.
| |
Collapse
|