1
|
Zhang B, Li Y, Wu Q, Xie L, Barwick B, Fu C, Li X, Wu D, Xia S, Chen J, Qian WP, Yang L, Osunkoya AO, Boise L, Vertino PM, Zhao Y, Li M, Chen HR, Kowalski J, Kucuk O, Zhou W, Dong JT. Acetylation of KLF5 maintains EMT and tumorigenicity to cause chemoresistant bone metastasis in prostate cancer. Nat Commun 2021; 12:1714. [PMID: 33731701 PMCID: PMC7969754 DOI: 10.1038/s41467-021-21976-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/18/2021] [Indexed: 12/25/2022] Open
Abstract
Advanced prostate cancer (PCa) often develops bone metastasis, for which therapies are very limited and the underlying mechanisms are poorly understood. We report that bone-borne TGF-β induces the acetylation of transcription factor KLF5 in PCa bone metastases, and acetylated KLF5 (Ac-KLF5) causes osteoclastogenesis and bone metastatic lesions by activating CXCR4, which leads to IL-11 secretion, and stimulating SHH/IL-6 paracrine signaling. While essential for maintaining the mesenchymal phenotype and tumorigenicity, Ac-KLF5 also causes resistance to docetaxel in tumors and bone metastases, which is overcome by targeting CXCR4 with FDA-approved plerixafor. Establishing a mechanism for bone metastasis and chemoresistance in PCa, these findings provide a rationale for treating chemoresistant bone metastasis of PCa with inhibitors of Ac-KLF5/CXCR4 signaling.
Collapse
Affiliation(s)
- Baotong Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Yixiang Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Qiao Wu
- Department of Genetics and Cell Biology, Nankai University College of Life Sciences, Tianjin, China
| | - Lin Xie
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming, China
| | - Benjamin Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Changying Fu
- Department of Genetics and Cell Biology, Nankai University College of Life Sciences, Tianjin, China
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Xin Li
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Daqing Wu
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Siyuan Xia
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jing Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Wei Ping Qian
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Lily Yang
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Adeboye O Osunkoya
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Pathology and Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lawrence Boise
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Paula M Vertino
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yichao Zhao
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Menglin Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Hsiao-Rong Chen
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jeanne Kowalski
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jin-Tang Dong
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology School of Medicine, Shenzhen, China.
| |
Collapse
|
2
|
Qualitative and quantitative reproducibility of [18]fluoromethycholine PET/computed tomography in prostate cancer. Nucl Med Commun 2020; 41:147-154. [PMID: 31939917 DOI: 10.1097/mnm.0000000000001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recurrence occurs in more than 50% of prostate cancer. To be effective, treatments require precise localization of tumor cells. [F]fluoromethylcholine ([18F]FCH) PET/computed tomography (CT) is currently used to restage disease in cases of biochemical relapse. To be used for therapy response as has been suggested, repeatability limits of PET derived indices need to be established. OBJECTIVE The aim of our study was to prospectively assess the qualitative and quantitative reproducibility [18F]FCH PET/CT in prostate cancer. METHODS Patients with histologically proven prostate cancer referred for initial staging or restaging were prospectively included. All patients underwent two [18F]FCH PET/CTs in the same conditions within a maximum of 3 weeks' time. We studied the repeatability of the visual report and the repeatability of SUVmax and its evolution over the acquisition time in lesions, liver and vascular background. Statistical analysis was performed using the Bland-Altman approach. RESULTS Twenty-one patients were included. Reporting repeatability was excellent with 97.8% of concordance. Mean repeatability of SUVmax considering all times and all lesions was 2.2% ± 20. Evolution of SUVmax was unpredictable, either increasing or decreasing over the acquisition time, both for lesions and for physiological activity. CONCLUSION Our study demonstrated that visual report of [18F]FCH PET/CT was very reproducible and that the repeatability limits of SUVmax was similar to those of other PET radiotracers. An SUVmax difference of more than 40% should be considered as representing a treatment response effect. Change of SUVmax during the acquisition time varied and should not be considered as an interpretation criterion.
Collapse
|
3
|
Quantification of bone flare on 18F-NaF PET/CT in metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis 2018; 22:324-330. [PMID: 30413807 DOI: 10.1038/s41391-018-0110-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/18/2018] [Accepted: 10/03/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND Bone flare has been observed on 99mTc-MDP bone scans of patients with metastatic castration-resistant prostate cancer (mCRPC). This exploratory study investigates bone flare in mCRPC patients receiving androgen receptor (AR) inhibitors using 18F-NaF PET/CT. METHODS Twenty-nine mCRPC patients undergoing AR-inhibiting therapy (abiraterone, orteronel, enzalutamide) received NaF PET/CT scans at baseline, week 6, and week 12 of treatment. SUV metrics were extracted globally for each patient (SUV) and for each individual lesion (iSUV). Bone flare was defined as increasing SUV metrics or lesion number at week 6 followed by subsequent week 12 decrease. Differences in metrics across timepoints were compared using Wilcoxon tests. Cox proportional hazard regression was conducted between global metrics and progression-free survival (PFS). RESULTS Total SUV was most sensitive for flare detection and was identified in 14/23 (61%) patients receiving CYP17A1-inhibitors (abiraterone, orteronel), and not identified in any of six patients receiving enzalutamide. The appearance of new lesions did not account for initial increases in SUV metrics. iSUV metrics followed patient-level trends: bone flare positive patients showed a median of 72% (range: 0-100%) of lesions with total iSUV flare. Increasing mean SUV at week 6 correlated with extended PFS (HR = 0.58, p = 0.02). CONCLUSION NaF PET bone flare was present on 61% of mCRPC patients in the first 6 weeks of treatment with CYP17A1-inhibitors. Characterization provided in this study suggests favorable PFS in patients showing bone flare. This characterization of NaF flare is important for guiding treatment assessment schedules to better distinguish between patients showing bone flare and those truly progressing, and should be performed for all emerging mCRPC treatments and imaging agents.
Collapse
|
4
|
Harmon SA, Tuite MJ, Jeraj R. Molecular image-directed biopsies: improving clinical biopsy selection in patients with multiple tumors. Phys Med Biol 2016; 61:7282-7299. [PMID: 27694707 DOI: 10.1088/0031-9155/61/20/7282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Site selection for image-guided biopsies in patients with multiple lesions is typically based on clinical feasibility and physician preference. This study outlines the development of a selection algorithm that, in addition to clinical requirements, incorporates quantitative imaging data for automatic identification of candidate lesions for biopsy. The algorithm is designed to rank potential targets by maximizing a lesion-specific score, incorporating various criteria separated into two categories: (1) physician-feasibility category including physician-preferred lesion location and absolute volume scores, and (2) imaging-based category including various modality and application-specific metrics. This platform was benchmarked in two clinical scenarios, a pre-treatment setting and response-based setting using imaging from metastatic prostate cancer patients with high disease burden (multiple lesions) undergoing conventional treatment and receiving whole-body [18F]NaF PET/CT scans pre- and mid-treatment. Targeting of metastatic lesions was robust to different weighting ratios and candidacy for biopsy was physician confirmed. Lesion ranked as top targets for biopsy remained so for all patients in pre-treatment and post-treatment biopsy selection after sensitivity testing was completed for physician-biased or imaging-biased scenarios. After identifying candidates, biopsy feasibility was evaluated by a physician and confirmed for 90% (32/36) of high-ranking lesions, of which all top choices were confirmed. The remaining cases represented lesions with high anatomical difficulty for targeting, such as proximity to sciatic nerve. This newly developed selection method was successfully used to quantitatively identify candidate lesions for biopsies in patients with multiple lesions. In a prospective study, we were able to successfully plan, develop, and implement this technique for the selection of a pre-treatment biopsy location.
Collapse
Affiliation(s)
- Stephanie A Harmon
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 7033 Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA
| | | | | |
Collapse
|
5
|
Lin C, Bradshaw T, Perk T, Harmon S, Eickhoff J, Jallow N, Choyke PL, Dahut WL, Larson S, Humm JL, Perlman S, Apolo AB, Morris MJ, Liu G, Jeraj R. Repeatability of Quantitative 18F-NaF PET: A Multicenter Study. J Nucl Med 2016; 57:1872-1879. [PMID: 27445292 DOI: 10.2967/jnumed.116.177295] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/18/2016] [Indexed: 12/17/2022] Open
Abstract
18F-NaF, a PET radiotracer of bone turnover, has shown potential as an imaging biomarker for assessing the response of bone metastases to therapy. This study aimed to evaluate the repeatability of 18F-NaF PET-derived SUV imaging metrics in individual bone lesions from patients in a multicenter study. METHODS Thirty-five castration-resistant prostate cancer patients with multiple metastases underwent 2 whole-body (test-retest) 18F-NaF PET/CT scans 3 ± 2 d apart from 1 of 3 imaging sites. A total of 411 bone lesions larger than 1.5 cm3 were automatically segmented using an SUV threshold of 15 g/mL. Two levels of analysis were performed: lesion-level, in which measures were extracted from individual-lesion regions of interest (ROI), and patient-level, in which all lesions within a patient were grouped into a patient ROI for analysis. Uptake was quantified with SUVmax, SUVmean, and SUVtotal Test-retest repeatability was assessed using Bland-Altman analysis, intraclass correlation coefficient (ICC), coefficient of variation, critical percentage difference, and repeatability coefficient. The 95% limit of agreement (LOA) of the ratio between test and retest measurements was calculated. RESULTS At the lesion level, the coefficient of variation for SUVmax, SUVmean, and SUVtotal was 14.1%, 6.6%, and 25.5%, respectively. At the patient level, it was slightly smaller: 12.0%, 5.3%, and 18.5%, respectively. ICC was excellent (>0.95) for all SUV metrics. Lesion-level 95% LOA for SUVmax, SUVmean, and SUVtotal was (0.76, 1.32), (0.88, 1.14), and (0.63, 1.71), respectively. Patient-level 95% LOA was slightly narrower, at (0.79, 1.26), (0.89, 1.10), and (0.70, 1.44), respectively. We observed significant differences in the variance and sample mean of lesion-level and patient-level measurements between imaging sites. CONCLUSION The repeatability of SUVmax, SUVmean, and SUVtotal for 18F-NaF PET/CT was similar between lesion- and patient-level ROIs. We found significant differences in lesion-level and patient-level distributions between sites. These results can be used to establish 18F-NaF PET-based criteria for assessing treatment response at the lesion and patient levels. 18F-NaF PET demonstrates repeatability levels useful for clinically quantifying the response of bone lesions to therapy.
Collapse
Affiliation(s)
- Christie Lin
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Tyler Bradshaw
- Department of Radiology, University of Wisconsin, Madison, Wisconsin
| | - Timothy Perk
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Stephanie Harmon
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Jens Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin
| | - Ngoneh Jallow
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - William L Dahut
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Steven Larson
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John Laurence Humm
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Scott Perlman
- Department of Radiology, University of Wisconsin, Madison, Wisconsin.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin; and
| | - Andrea B Apolo
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Michael J Morris
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Glenn Liu
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin; and
| | - Robert Jeraj
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin .,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin; and
| |
Collapse
|
6
|
Oprea-Lager DE, Kramer G, van de Ven PM, van den Eertwegh AJ, van Moorselaar RJ, Schober P, Hoekstra OS, Lammertsma AA, Boellaard R. Repeatability of Quantitative 18F-Fluoromethylcholine PET/CT Studies in Prostate Cancer. J Nucl Med 2015; 57:721-7. [DOI: 10.2967/jnumed.115.167692] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/01/2015] [Indexed: 11/16/2022] Open
|
7
|
Simoncic U, Perlman S, Liu G, Staab MJ, Straus JE, Jeraj R. Comparison of NaF and FDG PET/CT for assessment of treatment response in castration-resistant prostate cancers with osseous metastases. Clin Genitourin Cancer 2014; 13:e7-e17. [PMID: 25128349 DOI: 10.1016/j.clgc.2014.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Assessment of skeletal metastases' response to therapy is a highly relevant but unresolved clinical problem. The main goal of this work was to compare pharmacodynamic responses to therapy assessed with positron emission tomography-computed tomography (PET/CT) using fluorine-18 sodium fluoride (NaF) and fluorine-18 fluorodeoxyglucose (FDG) as the tracers. MATERIALS AND METHODS Patients with prostate cancer with known osseous metastases were treated with zibotentan (ZD4054) and imaged with combined dynamic NaF/FDG PET/CT before therapy (baseline), after 4 weeks of therapy (week 4), and after 2 weeks of treatment break (week 6). Kinetic analysis allowed comparison of the voxel-based tracer uptake rate parameter Ki, the vasculature parameters K1 (measuring perfusion/permeability) and Vb (measuring vasculature fraction in the tissue), and the standardized uptake values (SUVs). RESULTS Correlations were high for the NaF and FDG peak uptake parameters (Ki and SUV correlations ranged from 0.57 to 0.88) and for vasculature parameters (K1 and Vb correlations ranged from 0.61 to 0.81). Correlation was low between the NaF and FDG week 4 Ki responses (ρ = 0.35; P = .084) but was higher for NaF and FDG week 6 Ki responses (ρ = 0.72; P < .0001). Correlations for vasculature responses were always low (ρ < 0.35). NaF and FDG uptakes in the osseous metastases were spatially dislocated, with overlap in the range from 0% to 80%. CONCLUSION This study found that late NaF and FDG uptake responses are consistently correlated but that earlier uptake responses and all vasculature responses can be unrelated. This study also confirmed that FDG and NaF uptakes are spatially dislocated. Although treatment responses assessed with NaF and FDG may be correlated, using both tracers provides additional information.
Collapse
Affiliation(s)
- Urban Simoncic
- Jozef Stefan Institute, Ljubljana, Slovenia; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI; Centre of Excellence for Biosensors, Instrumentation and Process Control (COBIK), Ajdovscina, Slovenia.
| | - Scott Perlman
- Department of Radiology, University of Wisconsin-Madison, Madison, WI; University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Glenn Liu
- Genitourinary Oncology Research Program, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI; University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Mary Jane Staab
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Jane Elizabeth Straus
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Robert Jeraj
- Jozef Stefan Institute, Ljubljana, Slovenia; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI; Department of Radiology, University of Wisconsin-Madison, Madison, WI; Centre of Excellence for Biosensors, Instrumentation and Process Control (COBIK), Ajdovscina, Slovenia; University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
8
|
Scher HI. Building on Prostate Cancer Working Group 2 to change the paradigm from palliation to cure. Am Soc Clin Oncol Educ Book 2014:e204-12. [PMID: 24857104 DOI: 10.14694/edbook_am.2014.34.e204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Developing systemic therapies for advanced prostate cancer has significant challenges, including the difficulty of assessing baseline disease status, disease heterogeneity, and the lack of standards for assessing treatment effects that reliably reflect clinical benefit. To address these issues, the Prostate Cancer Working Group (PCWG2) took three actions. First, the Group incorporated a prostate cancer clinical states model framework for patient management and drug development. Second was establishing a two-objective paradigm in which trials are designed to evaluate a drug's ability to either (a) control, relieve, or eliminate present disease manifestations or (b) prevent or delay future disease manifestations. Third was the development of consensus criteria for eligibility, outcomes, and reporting in prostate cancer clinical trials. Now that the molecular interrogation of prostate cancer has led to a more complex understanding of disease biology, drug development has transitioned from evaluating cytotoxic agents with activity in multiple tumor types to the rational development of therapies targeting different aspects of the malignant process. In addition, the current availability of multiple therapies for advanced prostate cancer that prolong life brings a new mandate: that we define, validate, and qualify predictive biomarkers of sensitivity to guide treatment selection and establish endpoints short of survival that can lead to drug approval. Optimization of outcomes in future trials will require revised guidance on how to align clinically relevant objectives and eligibility with an evolving disease framework.
Collapse
Affiliation(s)
- Howard I Scher
- From the Genitourinary Oncology Service, Department of Medicine, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, and Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
9
|
Yip S, Jeraj R. Use of articulated registration for response assessment of individual metastatic bone lesions. Phys Med Biol 2014; 59:1501-14. [PMID: 24594875 DOI: 10.1088/0031-9155/59/6/1501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Accurate skeleton registration is necessary to match corresponding metastatic bone lesions for response assessment over multiple scans. In articulated registration (ART), whole-body skeletons are registered by auto-segmenting individual bones, then rigidly aligning them. Performance and robustness of the ART in lesion matching were evaluated and compared to other commonly used registration techniques. Sixteen prostate cancer patients were treated either with molecular targeted therapy or chemotherapy. Ten out of the 16 patients underwent the double baseline whole-body [F-18]NaF PET/CT scans for test-retest (TRT) evaluation. Twelve of the 16 patients underwent pre- and mid-treatment [F-18]NaF PET/CT scans. Skeletons at different time points were registered using ART, rigid, and deformable (DR) registration algorithms. The corresponding lesions were contoured and identified on successive PET images based on including the voxels with the standardized uptake value over 15. Each algorithm was evaluated for its ability to accurately align corresponding lesions via skeleton registration. A lesion matching score (MS) was measured for each lesion, which quantified the per cent overlap between the lesion's two corresponding contours. Three separate sensitivity studies were conducted to investigate the robustness of ART in matching: sensitivity of lesion matching to various contouring threshold levels, effects of imperfections in the bone auto-segmentation and sensitivity of mis-registration. The performance of ART (MS = 82% for both datasets, p ≪ 0.001) in lesion matching was significantly better than rigid (MS(TRT)=53%, MS(Response)= 46%) and DR (MS(TRT)=46%, MS(Response)=45%) algorithms. Neither varying threshold levels for lesion contouring nor imperfect bone segmentation had significant (p~0.10) impact on the ART matching performance as the MS remained unchanged. Despite the mis-registration reduced MS for ART, as low as 67% (p ≪ 0.001), the performance remained to be superior to the rigid and DR algorithms. ART is not only robust to contouring threshold levels for bone lesions, but also outperforms rigid and DR algorithms in lesion matching. ART therefore enables the study of TRT variability and treatment assessment of individual bone lesions.
Collapse
Affiliation(s)
- Stephen Yip
- Department of Physics, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
10
|
Vargas HA, Wassberg C, Fox JJ, Wibmer A, Goldman DA, Kuk D, Gonen M, Larson SM, Morris MJ, Scher HI, Hricak H. Bone metastases in castration-resistant prostate cancer: associations between morphologic CT patterns, glycolytic activity, and androgen receptor expression on PET and overall survival. Radiology 2013; 271:220-9. [PMID: 24475817 DOI: 10.1148/radiol.13130625] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To compare the features of bone metastases at computed tomography (CT) to tracer uptake at fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) and fluorine 18 16β-fluoro-5-dihydrotestosterone (FDHT) PET and to determine associations between these imaging features and overall survival in men with castration-resistant prostate cancer. MATERIALS AND METHODS This is a retrospective study of 38 patients with castration-resistant prostate cancer. Two readers independently evaluated CT, FDG PET, and FDHT PET features of bone metastases. Associations between imaging findings and overall survival were determined by using univariate Cox proportional hazards regression. RESULTS In 38 patients, reader 1 detected 881 lesions and reader 2 detected 867 lesions. Attenuation coefficients at CT correlated inversely with FDG (reader 1: r = -0.3007; P < .001; reader 2: r = -0.3147; P < .001) and FDHT (reader 1: r = -0.2680; P = .001; reader 2: r = -0.3656; P < .001) uptake. The number of lesions on CT scans was significantly associated with overall survival (reader 1: hazard ratio [HR], 1.025; P = .05; reader 2: HR, 1.021; P = .04). The numbers of lesions on FDG and FDHT PET scans were significantly associated with overall survival for reader 1 (HR, 1.051-1.109; P < .001) and reader 2 (HR, 1.026-1.082; P ≤ .009). Patients with higher FDHT uptake (lesion with the highest maximum standardized uptake value) had significantly shorter overall survival (reader 1: HR, 1.078; P = .02; reader 2: HR, 1.092; P = .02). FDG uptake intensity was not associated with overall survival (reader 1, P = .65; reader 2, P = .38). CONCLUSION In patients with castration-resistant prostate cancer, numbers of bone lesions on CT, FDG PET, and FDHT PET scans and the intensity of FDHT uptake are significantly associated with overall survival.
Collapse
Affiliation(s)
- Hebert Alberto Vargas
- From the Department of Radiology (H.A.V., C.W., J.J.F., A.W., D.A.G., S.M.L., H.H.), Department of Epidemiology and Biostatistics (D.K., M.G.), and Genitourinary Oncology Service, Department of Medicine (M.J.M., H.I.S.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; and Department of Radiology, Oncology and Radiations Sciences, Section of Radiology, Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden (C.W.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|