1
|
Management of Pancreatic Cancer and Its Microenvironment: Potential Impact of Nano-Targeting. Cancers (Basel) 2022; 14:cancers14122879. [PMID: 35740545 PMCID: PMC9221065 DOI: 10.3390/cancers14122879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The poor prognosis and survival rates associated with pancreatic cancer show that there is a clear unmet need for better disease management. The heterogeneity of the tumor and its microenvironment, including stroma and fibrosis, creates a challenge for current therapy. The pathogenesis of pancreatic cancer is mediated by several factors, such as severed communication between pancreatic stellate cells and stroma and the consequences of hypoxia-inducible factors that aid in the survival of the pancreatic tumor. Given the multiple limitations of molecular targeting, multiple functional nano-targeting offers a breakthrough in pancreatic cancer treatment through its ability to overcome the physical challenges posed by the tumor microenvironment, amongst many others. Abstract Pancreatic ductal adenocarcinoma (PDAC) is rare and difficult to treat, making it a complicated diagnosis for every patient. These patients have a low survival rate along with a poor quality of life under current pancreatic cancer therapies that adversely affect healthy cells due to the lack of precise drug targeting. Additionally, chemoresistance and radioresistance are other key challenges in PDAC, which might be due in part to the lack of tumor-targeted delivery of sufficient levels of different chemotherapies because of their low therapeutic index. Thus, instead of leaving a trail of off-target damage when killing these cancer cells, it is best to find a way that targets them directly. More seriously, metastatic relapse often occurs after surgery, and therefore, achieving improved outcomes in the management of PDAC in the absence of strategies preventing metastasis is likely to be impossible. Nano-targeting of the tumor and its microenvironment has shown promise for treating various cancers, which might be a promising approach for PDAC. This review updates the advancements in treatment modalities for pancreatic cancer and highlights future directions that warrant further investigation to increase pancreatic patients’ overall survival.
Collapse
|
2
|
Aoki S, Inoue K, Klein S, Halvorsen S, Chen J, Matsui A, Nikmaneshi MR, Kitahara S, Hato T, Chen X, Kawakubo K, Nia HT, Chen I, Schanne DH, Mamessier E, Shigeta K, Kikuchi H, Ramjiawan RR, Schmidt TCE, Iwasaki M, Yau T, Hong TS, Quaas A, Plum PS, Dima S, Popescu I, Bardeesy N, Munn LL, Borad MJ, Sassi S, Jain RK, Zhu AX, Duda DG. Placental growth factor promotes tumour desmoplasia and treatment resistance in intrahepatic cholangiocarcinoma. Gut 2022; 71:185-193. [PMID: 33431577 PMCID: PMC8666816 DOI: 10.1136/gutjnl-2020-322493] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Intrahepatic cholangiocarcinoma (ICC)-a rare liver malignancy with limited therapeutic options-is characterised by aggressive progression, desmoplasia and vascular abnormalities. The aim of this study was to determine the role of placental growth factor (PlGF) in ICC progression. DESIGN We evaluated the expression of PlGF in specimens from ICC patients and assessed the therapeutic effect of genetic or pharmacologic inhibition of PlGF in orthotopically grafted ICC mouse models. We evaluated the impact of PlGF stimulation or blockade in ICC cells and cancer-associated fibroblasts (CAFs) using in vitro 3-D coculture systems. RESULTS PlGF levels were elevated in human ICC stromal cells and circulating blood plasma and were associated with disease progression. Single-cell RNA sequencing showed that the major impact of PlGF blockade in mice was enrichment of quiescent CAFs, characterised by high gene transcription levels related to the Akt pathway, glycolysis and hypoxia signalling. PlGF blockade suppressed Akt phosphorylation and myofibroblast activation in ICC-derived CAFs. PlGF blockade also reduced desmoplasia and tissue stiffness, which resulted in reopening of collapsed tumour vessels and improved blood perfusion, while reducing ICC cell invasion. Moreover, PlGF blockade enhanced the efficacy of standard chemotherapy in mice-bearing ICC. Conclusion PlGF blockade leads to a reduction in intratumorous hypoxia and metastatic dissemination, enhanced chemotherapy sensitivity and increased survival in mice-bearing aggressive ICC.
Collapse
Affiliation(s)
- Shuichi Aoki
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Koetsu Inoue
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Sebastian Klein
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Pathology, University Hospital Cologne, Cologne, Nordrhein-Westfalen, Germany
| | - Stefan Halvorsen
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jiang Chen
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,General Surgery, Zhejiang University, Hangzhou, Zhejiang, China
| | - Aya Matsui
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mohammad R Nikmaneshi
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shuji Kitahara
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Anatomy and Developmental Biology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Tai Hato
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Thoracic Surgery, Saitama Medical University, Iruma-gun, Saitama, Japan
| | - Xianfeng Chen
- Oncology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Kazumichi Kawakubo
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hadi T Nia
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Bioengineering, Boston University, Boston, Massachusetts, USA
| | - Ivy Chen
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Research, STIMIT Corporation, Cambridge, Massachusetts, USA
| | - Daniel H Schanne
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Emilie Mamessier
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Molecular Oncology, Cancer Research Center, Marseille, France
| | - Kohei Shigeta
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Surgery, Keio University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Hiroto Kikuchi
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Surgery, Keio University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Rakesh R Ramjiawan
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tyge CE Schmidt
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Masaaki Iwasaki
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Yau
- Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Theodore S Hong
- Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexander Quaas
- Pathology, University Hospital Cologne, Cologne, Nordrhein-Westfalen, Germany
| | - Patrick S Plum
- Department of General, Visceral and Cancer Surgery, University of Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Simona Dima
- Center of Digestive Diseases and Liver Transplantation, Clinical Institute Fundeni, Bucuresti, Romania
| | - Irinel Popescu
- Center of Digestive Diseases and Liver Transplantation, Clinical Institute Fundeni, Bucuresti, Romania
| | - Nabeel Bardeesy
- Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lance L Munn
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Slim Sassi
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA,Orthopedics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rakesh K. Jain
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrew X Zhu
- Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA,Jiahui International Cancer Center, Jiahui Health, Shanghai, China
| | - Dan G Duda
- Radiation Oncology/Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Mai S, Inkielewicz-Stepniak I. Pancreatic Cancer and Platelets Crosstalk: A Potential Biomarker and Target. Front Cell Dev Biol 2021; 9:749689. [PMID: 34858977 PMCID: PMC8631477 DOI: 10.3389/fcell.2021.749689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Platelets have been recognized as key players in hemostasis, thrombosis, and cancer. Preclinical and clinical researches evidenced that tumorigenesis and metastasis can be promoted by platelets through a wide variety of crosstalk between cancer cells and platelets. Pancreatic cancer is a devastating disease with high morbidity and mortality worldwide. Although the relationship between pancreatic cancer and platelets in clinical diagnosis is described, the interplay between pancreatic cancer and platelets, the underlying pathological mechanism and pathways remain a matter of intensive study. This review summaries recent researches in connections between platelets and pancreatic cancer. The existing data showed different underlying mechanisms were involved in their complex crosstalk. Typically, pancreatic tumor accelerates platelet aggregation which forms thrombosis. Furthermore, extracellular vesicles released by platelets promote communication in a neoplastic microenvironment and illustrate how these interactions drive disease progression. We also discuss the advantages of novel model organoids in pancreatic cancer research. A more in-depth understanding of tumor and platelets crosstalk which is based on organoids and translational therapies may provide potential diagnostic and therapeutic strategies for pancreatic cancer progression.
Collapse
Affiliation(s)
- Shaoshan Mai
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
4
|
Wang Z, Liu Y, Mo Y, Zhang H, Dai Z, Zhang X, Ye W, Cao H, Liu Z, Cheng Q. The CXCL Family Contributes to Immunosuppressive Microenvironment in Gliomas and Assists in Gliomas Chemotherapy. Front Immunol 2021; 12:731751. [PMID: 34603309 PMCID: PMC8482424 DOI: 10.3389/fimmu.2021.731751] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023] Open
Abstract
Gliomas are a type of malignant central nervous system tumor with poor prognosis. Molecular biomarkers of gliomas can predict glioma patient's clinical outcome, but their limitations are also emerging. C-X-C motif chemokine ligand family plays a critical role in shaping tumor immune landscape and modulating tumor progression, but its role in gliomas is elusive. In this work, samples of TCGA were treated as the training cohort, and as for validation cohort, two CGGA datasets, four datasets from GEO database, and our own clinical samples were enrolled. Consensus clustering analysis was first introduced to classify samples based on CXCL expression profile, and the support vector machine was applied to construct the cluster model in validation cohort based on training cohort. Next, the elastic net analysis was applied to calculate the risk score of each sample based on CXCL expression. High-risk samples associated with more malignant clinical features, worse survival outcome, and more complicated immune landscape than low-risk samples. Besides, higher immune checkpoint gene expression was also noticed in high-risk samples, suggesting CXCL may participate in tumor evasion from immune surveillance. Notably, high-risk samples also manifested higher chemotherapy resistance than low-risk samples. Therefore, we predicted potential compounds that target high-risk samples. Two novel drugs, LCL-161 and ADZ5582, were firstly identified as gliomas' potential compounds, and five compounds from PubChem database were filtered out. Taken together, we constructed a prognostic model based on CXCL expression, and predicted that CXCL may affect tumor progression by modulating tumor immune landscape and tumor immune escape. Novel potential compounds were also proposed, which may improve malignant glioma prognosis.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuze Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinic Medicine of 5-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuyao Mo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinic Medicine of 5-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Weijie Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Gliomas of Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Gliomas of Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Mashayekhi V, Mocellin O, Fens MH, Krijger GC, Brosens LA, Oliveira S. Targeting of promising transmembrane proteins for diagnosis and treatment of pancreatic ductal adenocarcinoma. Theranostics 2021; 11:9022-9037. [PMID: 34522225 PMCID: PMC8419040 DOI: 10.7150/thno.60350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal types of cancer due to the relatively late diagnosis and the limited therapeutic options. Current treatment regimens mainly comprise the cytotoxic agents gemcitabine and FOLFIRINOX. These compounds have shown limited efficacy and severe side effects, highlighting the necessity for earlier detection and the development of more effective, and better-tolerated treatments. Although targeted therapies are promising for the treatment of several types of cancer, identification of suitable targets for early diagnosis and targeted therapy of PDAC is challenging. Interestingly, several transmembrane proteins are overexpressed in PDAC cells that show low expression in healthy pancreas and may therefore serve as potential targets for treatment and/or diagnostic purposes. In this review we describe the 11 most promising transmembrane proteins, carefully selected after a thorough literature search. Favorable features and potential applications of each target, as well as the results of the preclinical and clinical studies conducted in the past ten years, are discussed in detail.
Collapse
Affiliation(s)
- Vida Mashayekhi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Orsola Mocellin
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Marcel H.A.M. Fens
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Gerard C. Krijger
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Faculty of Medicine, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Lodewijk A.A. Brosens
- Department of Pathology, University Medical Center Utrecht, Faculty of Medicine, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Sabrina Oliveira
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| |
Collapse
|
6
|
Huelse J, Fridlyand D, Earp S, DeRyckere D, Graham DK. MERTK in cancer therapy: Targeting the receptor tyrosine kinase in tumor cells and the immune system. Pharmacol Ther 2020; 213:107577. [PMID: 32417270 PMCID: PMC9847360 DOI: 10.1016/j.pharmthera.2020.107577] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The receptor tyrosine kinase MERTK is aberrantly expressed in numerous human malignancies, and is a novel target in cancer therapeutics. Physiologic roles of MERTK include regulation of tissue homeostasis and repair, innate immune control, and platelet aggregation. However, aberrant expression in a wide range of liquid and solid malignancies promotes neoplasia via growth factor independence, cell cycle progression, proliferation and tumor growth, resistance to apoptosis, and promotion of tumor metastases. Additionally, MERTK signaling contributes to an immunosuppressive tumor microenvironment via induction of an anti-inflammatory cytokine profile and regulation of the PD-1 axis, as well as regulation of macrophage, myeloid-derived suppressor cell, natural killer cell and T cell functions. Various MERTK-directed therapies are in preclinical development, and clinical trials are underway. In this review we discuss MERTK inhibition as an emerging strategy for cancer therapy, focusing on MERTK expression and function in neoplasia and its role in mediating resistance to cytotoxic and targeted therapies as well as in suppressing anti-tumor immunity. Additionally, we review preclinical and clinical pharmacological strategies to target MERTK.
Collapse
Affiliation(s)
- Justus Huelse
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Diana Fridlyand
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
7
|
Firuzi O, Che PP, El Hassouni B, Buijs M, Coppola S, Löhr M, Funel N, Heuchel R, Carnevale I, Schmidt T, Mantini G, Avan A, Saso L, Peters GJ, Giovannetti E. Role of c-MET Inhibitors in Overcoming Drug Resistance in Spheroid Models of Primary Human Pancreatic Cancer and Stellate Cells. Cancers (Basel) 2019; 11:E638. [PMID: 31072019 PMCID: PMC6562408 DOI: 10.3390/cancers11050638] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/18/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022] Open
Abstract
Pancreatic stellate cells (PSCs) are a key component of tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC) and contribute to drug resistance. c-MET receptor tyrosine kinase activation plays an important role in tumorigenesis in different cancers including PDAC. In this study, effects of PSC conditioned medium (PCM) on c-MET phosphorylation (by immunocytochemistry enzyme-linked immunosorbent assay (ELISA)) and drug response (by sulforhodamine B assay) were investigated in five primary PDAC cells. In novel 3D-spheroid co-cultures of cyan fluorescence protein (CFP)-firefly luciferase (Fluc)-expressing primary human PDAC cells and green fluorescence protein (GFP)-expressing immortalized PSCs, PDAC cell growth and chemosensitivity were examined by luciferase assay, while spheroids' architecture was evaluated by confocal microscopy. The highest phospho-c-MET expression was detected in PDAC5 and its subclone sorted for "stage specific embryonic antigen-4" (PDAC5 (SSEA4)). PCM of cells pre-incubated with PDAC conditioned medium, containing increased hepatocyte growth factor (HGF) levels, made PDAC cells significantly more resistant to gemcitabine, but not to c-MET inhibitors. Hetero-spheroids containing both PSCs and PDAC5 (SSEA4) cells were more resistant to gemcitabine compared to PDAC5 (SSEA4) homo-spheroids. However, c-MET inhibitors (tivantinib, PHA-665752 and crizotinib) were equally effective in both spheroid models. Experiments with primary human PSCs confirmed the main findings. In conclusion, we developed spheroid models to evaluate PSC-PDAC reciprocal interaction, unraveling c-MET inhibition as an important therapeutic option against drug resistant PDAC.
Collapse
Affiliation(s)
- Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, 71348-14336 Shiraz, Iran.
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV, Amsterdam, The Netherlands.
| | - Pei Pei Che
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV, Amsterdam, The Netherlands.
| | - Btissame El Hassouni
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV, Amsterdam, The Netherlands.
| | - Mark Buijs
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV, Amsterdam, The Netherlands.
| | - Stefano Coppola
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA, Leiden, The Netherlands.
| | - Matthias Löhr
- Division of Surgery, CLINTEC, Karolinska Institutet, SE-171, Stockholm, Sweden.
| | - Niccola Funel
- Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, 56124 Pisa, Italy.
| | - Rainer Heuchel
- Division of Surgery, CLINTEC, Karolinska Institutet, SE-171, Stockholm, Sweden.
| | - Ilaria Carnevale
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, 56124 Pisa, Italy.
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA, Leiden, The Netherlands.
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV, Amsterdam, The Netherlands.
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, 91778-99191 Mashhad, Iran.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, 00185, Rome, Italy.
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV, Amsterdam, The Netherlands.
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, 56124 Pisa, Italy.
- Fondazione Pisana per la Scienza, 56017, Pisa, Italy.
| |
Collapse
|
8
|
Ghanaatgar-Kasbi S, Khorrami S, Avan A, Aledavoud SA, Ferns GA. Targeting the C-MET/HGF Signaling Pathway in Pancreatic Ductal Adenocarcinoma. Curr Pharm Des 2019; 24:4619-4625. [PMID: 30636579 DOI: 10.2174/1381612825666190110145855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/24/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023]
Abstract
The c-mesenchymal-epithelial transition factor (c-MET) is involved in the tumorigenesis of various
cancers. HGF/Met inhibitors are now attracting considerable interest due to their anti-tumor activity in multiple
malignancies such as pancreatic cancer. It is likely that within the next few years, HGF/Met inhibitors will become
a crucial component for cancer management. In this review, we summarize the role of HGF/Met pathway in
the pathogenesis of pancreatic cancer, with particular emphasize on HGF/Met inhibitors in the clinical setting,
including Cabozantinib (XL184, BMS-907351), Crizotinib (PF-02341066), MK-2461, Merestinib (LY2801653),
Tivantinib (ARQ197), SU11274, Onartuzumab (MetMab), Emibetuzumab (LY2875358), Ficlatuzumab (AV-
299), Rilotumumab (AMG 102), and NK4 in pancreatic cancer.
Collapse
Affiliation(s)
- Sadaf Ghanaatgar-Kasbi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Khorrami
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed A. Aledavoud
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| |
Collapse
|