1
|
Dhafar HO, BaHammam AS. Body Weight and Metabolic Rate Changes in Narcolepsy: Current Knowledge and Future Directions. Metabolites 2022; 12:1120. [PMID: 36422261 PMCID: PMC9693066 DOI: 10.3390/metabo12111120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 08/26/2023] Open
Abstract
Narcolepsy is a known auto-immune disease that presents mainly in the teenage years with irresistible sleep attacks. Patients with narcolepsy, especially NT1, have been found to have a high prevalence of obesity and other metabolic derangements. This narrative review aimed to address the relationship between narcolepsy and changes in weight and metabolic rate, and discuss potential mechanisms for weight gain and metabolic changes and future research agendas on this topic. This article will provide a balanced, up-to-date critical review of the current literature, and delineate areas for future research, in order to understand the pathophysiological metabolic changes in narcolepsy. Articles using predefined keywords were searched for in PubMed and Google Scholar databases, with predefined inclusion and exclusion criteria. Compared to controls, patients with narcolepsy are more likely to be obese and have higher BMIs and waist circumferences. According to recent research, weight gain in narcolepsy patients may be higher during the disease's outset. The precise mechanisms causing this weight gain remains unknown. The available information, albeit limited, does not support differences in basal or resting metabolic rates between patients with narcolepsy and controls, other than during the time of disease onset. The evidence supporting the role of orexin in weight gain in humans with narcolepsy is still controversial, in the literature. Furthermore, the available data did not show any appreciable alterations in the levels of CSF melanin-concentrating hormone, plasma and CSF leptin, or serum growth hormone, in relation to weight gain. Other mechanisms have been proposed, including a reduction in sympathetic tone, hormonal changes, changes in eating behavior and physical activity, and genetic predisposition. The association between increased body mass index and narcolepsy is well-recognized; however, the relationship between narcolepsy and other metabolic measures, such as body fat/muscle distribution and metabolic rate independent of BMI, is not well documented, and the available evidence is inconsistent. Future longitudinal studies with larger sample sizes are needed to assess BMR in patients with narcolepsy under a standard protocol at the outset of narcolepsy, with regular follow-up.
Collapse
Affiliation(s)
- Hamza O. Dhafar
- The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Family Medicine, Prince Mansour Military Hospital, Taif 26526, Saudi Arabia
| | - Ahmed S. BaHammam
- The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
- The Strategic Technologies Program of the National Plan for Sciences and Technology and Innovation in the Kingdom of Saudi Arabia, P.O. Box 2454, Riyadh 11324, Saudi Arabia
| |
Collapse
|
2
|
Liu L, Wang Q, Liu A, Lan X, Huang Y, Zhao Z, Jie H, Chen J, Zhao Y. Physiological Implications of Orexins/Hypocretins on Energy Metabolism and Adipose Tissue Development. ACS OMEGA 2020; 5:547-555. [PMID: 31956801 PMCID: PMC6964296 DOI: 10.1021/acsomega.9b03106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/27/2019] [Indexed: 05/09/2023]
Abstract
Orexins/hypocretins and their receptors (OXRs) are ubiquitously distributed throughout the nervous system and peripheral tissues. Recently, various reports have indicated that orexins play regulatory roles in numerous physiological processes involved in obesity, energy homeostasis, sleep-wake cycle, analgesia, alcoholism, learning, and memory. This review aims to outline recent progress in the research and development of orexins used in biochemical signaling pathways, secretion pathways, and the regulation of energy metabolism/adipose tissue development. Orexins regulate a variety of physiological functions in the body by activating phospholipase C/protein kinase C and AC/cAMP/PKA pathways, through receptors coupled to Gq and Gi/Gs, respectively. The secretion of orexins is modulated by blood glucose, blood lipids, hormones, and neuropeptides. Orexins have critical functions in energy metabolism, regulating both feeding behavior and energy expenditure. Increasing the sensitivity of orexin-coupled hypothalamic neurons concurrently enhances spontaneous physical activity, non-exercise activity thermogenesis, white adipose tissue lipolysis, and brown adipose tissue thermogenesis. With this comprehensive review of the current literature on the subject, we hope to provide an integrated perspective for the prevention/treatment of obesity.
Collapse
Affiliation(s)
- Lingbin Liu
- College of Animal
Science and Technology, Chongqing Key Laboratory of Forage & Herbivore,
Chongqing Engineering Research Center for Herbivores Resource Protection
and Utilization, Southwest University, Beibei, 400715 Chongqing, P. R. China
- E-mail: (L.L.)
| | - Qigui Wang
- ChongQing Academy
of Animal Sciences, Rongchang, 402460 Chongqing, P. R. China
| | - Anfang Liu
- College of Animal Science, Southwest University, Rongchang Campus, Rongchang, 402460 Chongqing, P.R. China
| | - Xi Lan
- College of Animal
Science and Technology, Chongqing Key Laboratory of Forage & Herbivore,
Chongqing Engineering Research Center for Herbivores Resource Protection
and Utilization, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Yongfu Huang
- College of Animal
Science and Technology, Chongqing Key Laboratory of Forage & Herbivore,
Chongqing Engineering Research Center for Herbivores Resource Protection
and Utilization, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Zhongquan Zhao
- College of Animal
Science and Technology, Chongqing Key Laboratory of Forage & Herbivore,
Chongqing Engineering Research Center for Herbivores Resource Protection
and Utilization, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Hang Jie
- Chongqing Institute of Medicinal Plant
Cultivation, Nanchuan, 408435 Chongqing, P.R. China
| | - Juncai Chen
- College of Animal
Science and Technology, Chongqing Key Laboratory of Forage & Herbivore,
Chongqing Engineering Research Center for Herbivores Resource Protection
and Utilization, Southwest University, Beibei, 400715 Chongqing, P. R. China
| | - Yongju Zhao
- College of Animal
Science and Technology, Chongqing Key Laboratory of Forage & Herbivore,
Chongqing Engineering Research Center for Herbivores Resource Protection
and Utilization, Southwest University, Beibei, 400715 Chongqing, P. R. China
- E-mail: (Y.Z.)
| |
Collapse
|