1
|
Lundy J, Harris M, Zalcberg J, Zimet A, Goldstein D, Gebski V, Borsaru A, Desmond C, Swan M, Jenkins BJ, Croagh D. EUS-FNA Biopsies to Guide Precision Medicine in Pancreatic Cancer: Results of a Pilot Study to Identify KRAS Wild-Type Tumours for Targeted Therapy. Front Oncol 2021; 11:770022. [PMID: 34956889 PMCID: PMC8696205 DOI: 10.3389/fonc.2021.770022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer death and lacks effective treatment options. Diagnostic endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) biopsies represent an appealing source of material for molecular analysis to inform targeted therapy, as they are often the only available tissue for patients presenting with PDAC irrespective of disease stage. However, EUS-FNA biopsies are typically not used to screen for precision medicine studies due to concerns about low tissue yield and quality. Epidermal growth factor receptor (EGFR) inhibition has shown promise in clinical trials of unselected patients with advanced pancreatic cancer, but has not been prospectively tested in KRAS wild-type patients. Here, we examine the clinical utility of EUS-FNA biopsies for molecular screening of KRAS wild-type PDAC patients for targeted anti-EGFR therapy to assess the feasibility of this approach. Patients and Methods Fresh frozen EUS-FNA or surgical biopsies from PDAC patient tumours were used to screen for KRAS mutations. Eligible patients with recurrent, locally advanced, or metastatic KRAS wild-type status who had received at least one prior line of chemotherapy were enrolled in a pilot study (ACTRN12617000540314) and treated with panitumumab at 6mg/kg intravenously every 2 weeks until progression or unacceptable toxicity. The primary endpoint was 4-month progression-free survival (PFS). Results 275 patient biopsies were screened for KRAS mutations, which were detected in 88.3% of patient samples. 8 eligible KRAS wild-type patients were enrolled onto the interventional study between November 2017 and December 2020 and treated with panitumumab. 4-month PFS was 14.3% with no objective tumour responses observed. The only grade 3/4 treatment related toxicity observed was hypomagnesaemia. Conclusions This study demonstrates proof-of-principle feasibility to molecularly screen patients with pancreatic cancer for targeted therapies, and confirms diagnostic EUS-FNA biopsies as a reliable source of tumour material for molecular analysis. Single agent panitumumab was safe and tolerable but led to no objective tumour responses in this population.
Collapse
Affiliation(s)
- Joanne Lundy
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.,Department of Surgery, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Marion Harris
- Department of Oncology, Faculty of Medicine, Nursing and Health Sciences and School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - John Zalcberg
- Department of Medical Oncology, Alfred Health, Melbourne, VIC, Australia.,Public Health and Preventative Medicine, Monash University, Melbourne, VIC, Australia
| | - Allan Zimet
- Department of Medical Oncology, Epworth Hospital, Melbourne, VIC, Australia
| | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia.,Department of Medical Oncology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Val Gebski
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Adina Borsaru
- Diagnostic Imaging, Monash Health, Melbourne, VIC, Australia
| | | | - Michael Swan
- Department of Gastroenterology, Monash Health, Melbourne, VIC, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Daniel Croagh
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Surgery, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.,Department of Surgery, Epworth Healthcare, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Luchini C, Paolino G, Mattiolo P, Piredda ML, Cavaliere A, Gaule M, Melisi D, Salvia R, Malleo G, Shin JI, Cargnin S, Terrazzino S, Lawlor RT, Milella M, Scarpa A. KRAS wild-type pancreatic ductal adenocarcinoma: molecular pathology and therapeutic opportunities. J Exp Clin Cancer Res 2020; 39:227. [PMID: 33115526 PMCID: PMC7594413 DOI: 10.1186/s13046-020-01732-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease, whose main molecular trait is the MAPK pathway activation due to KRAS mutation, which is present in 90% of cases.The genetic landscape of KRAS wild type PDAC can be divided into three categories. The first is represented by tumors with an activated MAPK pathway due to BRAF mutation that occur in up to 4% of cases. The second includes tumors with microsatellite instability (MSI) due to defective DNA mismatch repair (dMMR), which occurs in about 2% of cases, also featuring a high tumor mutational burden. The third category is represented by tumors with kinase fusion genes, which marks about 4% of cases. While therapeutic molecular targeting of KRAS is an unresolved challenge, KRAS-wild type PDACs have potential options for tailored treatments, including BRAF antagonists and MAPK inhibitors for the first group, immunotherapy with anti-PD-1/PD-L1 agents for the MSI/dMMR group, and kinase inhibitors for the third group.This calls for a complementation of the histological diagnosis of PDAC with a routine determination of KRAS followed by a comprehensive molecular profiling of KRAS-negative cases.
Collapse
Affiliation(s)
- Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134, Verona, Italy
| | - Gaetano Paolino
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134, Verona, Italy
| | - Paola Mattiolo
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134, Verona, Italy
| | - Maria L Piredda
- ARC-Net Research Center, University and Hospital Trust of Verona, 37134, Verona, Italy
| | - Alessandro Cavaliere
- Section of Oncology, Department of Medicine, University and Hospital Trust of Verona, Piazzale L.A. Scuro 10, 37134, Verona, VR, Italy
| | - Marina Gaule
- Section of Oncology, Department of Medicine, University and Hospital Trust of Verona, Piazzale L.A. Scuro 10, 37134, Verona, VR, Italy
| | - Davide Melisi
- Section of Oncology, Department of Medicine, University and Hospital Trust of Verona, Piazzale L.A. Scuro 10, 37134, Verona, VR, Italy
| | - Roberto Salvia
- Department of Surgery, University of Verona, 37134, Verona, Italy
| | - Giuseppe Malleo
- Department of Surgery, University of Verona, 37134, Verona, Italy
| | - Jae Il Shin
- Yonsei University College of Medicine, 03722, Seoul, Republic of Korea
| | - Sarah Cargnin
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, 28100, Novara, Italy
| | - Salvatore Terrazzino
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, 28100, Novara, Italy
| | - Rita T Lawlor
- ARC-Net Research Center, University and Hospital Trust of Verona, 37134, Verona, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University and Hospital Trust of Verona, Piazzale L.A. Scuro 10, 37134, Verona, VR, Italy.
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134, Verona, Italy
- ARC-Net Research Center, University and Hospital Trust of Verona, 37134, Verona, Italy
| |
Collapse
|