1
|
Liu M, Li N, Qu C, Gao Y, Wu L, Hu LG. Amylin deposition activates HIF1α and 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) signaling in failing hearts of non-human primates. Commun Biol 2021; 4:188. [PMID: 33580152 PMCID: PMC7881154 DOI: 10.1038/s42003-021-01676-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023] Open
Abstract
Hyperamylinemia induces amylin aggregation and toxicity in the pancreas and contributes to the development of type-2 diabetes (T2D). Cardiac amylin deposition in patients with obesity and T2D was found to accelerate heart dysfunction. Non-human primates (NHPs) have similar genetic, metabolic, and cardiovascular processes as humans. However, the underlying mechanisms of cardiac amylin in NHPs, particularly related to the hypoxia inducible factor (HIF)1α and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) signaling pathways, are unknown. Here, we demonstrate that in NHPs, amylin deposition in heart failure (HF) contributes to cardiac dysfunction via activation of HIF1α and PFKFB3 signaling. This was confirmed in two in vitro cardiomyocyte models. Furthermore, alterations of intracellular Ca2+, reactive oxygen species, mitochondrial function, and lactate levels were observed in amylin-treated cells. Our study demonstrates a pathological role for amylin in the activation of HIF1α and PFKFB3 signaling in NHPs with HF, establishing amylin as a promising target for heart disease patients.
Collapse
Affiliation(s)
- Miao Liu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Nan Li
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Chun Qu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Yilin Gao
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Lijie Wu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Liangbiao George Hu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China.
| |
Collapse
|
2
|
Zoltán O, László P, Éva K, Béla V. A "keto-enol" plaque buster mechanism to diminish Alzheimer's β-Amyloid burden. Biochem Biophys Res Commun 2020; 532:82-87. [PMID: 32828536 DOI: 10.1016/j.bbrc.2020.07.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/17/2020] [Indexed: 11/26/2022]
Abstract
Curcumin and related compounds have been validated to remove even well-developed human β-amyloid plaques from the brain of transgenic mice, in vivo. However, their molecular mechanism of the plaque buster activity is rather unknown. Computational chemistry was employed here to better understand the β-amyloid protein elimination. According to our docking studies, a tautomeric "keto-enol" flip-flop mechanism is proposed that may chop up β-amyloid plaques in Alzheimer's due to removing each hairpin-foldamers one by one from both ends of aggregated fibrils. According to the experimented models, other bi-stable "keto-enol" pharmacophores might be identified to break up amyloid plaques and enhance rapid clearance of toxic aggregates in Alzheimer's disease.
Collapse
Affiliation(s)
- Oláh Zoltán
- Bioinformatics and Molecular Surgery Unit, Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, Miskolc, Hungary; Acheuron Ltd, Szeged, Hungary; Forget-Me-Not B2B Ltd, Szeged, Hungary
| | | | - Kocsis Éva
- Bioinformatics and Molecular Surgery Unit, Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, Miskolc, Hungary; Acheuron Ltd, Szeged, Hungary; Forget-Me-Not B2B Ltd, Szeged, Hungary
| | - Viskolcz Béla
- Bioinformatics and Molecular Surgery Unit, Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, Miskolc, Hungary
| |
Collapse
|
3
|
Abstract
OBJECTIVES Type 2 diabetes (T2D) is histopathologically characterized by islet amyloid and is closely connected with vascular complications. Here, we explore the presence of pancreatic angiopathy (PA) associated with islet amyloid and T2D. METHODS From a total of 172 autopsy cases who had a history of T2D diagnosis, we randomly selected 30 T2D autopsy cases with islet amyloid (DA+) in comparison with islet amyloid-free (DA-) 30 T2D cases and 60 nondiabetic (ND) controls. Amyloid deposits and PA including atherosclerosis of pancreatic interlobar arteries, arterial calcification, atheroembolism, hyaline arteriosclerosis of small arterioles, and islet capillary density were detected in all groups. RESULTS Pancreatic angiopathy was found in 91.7% of patients with T2D and in 68.3% of ND controls (P < 0.01). Furthermore, 100% of DA+ patients and 83.3% of DA- subjects showed PA. The intraislet capillary density was significantly lower in DA+ subjects than DA- subjects (mean [standard deviation], DA+: 205 [82] count/mm; DA-: 344 [76] count/mm; ND: 291 [94] count/mm; P < 0.01). Finally, interlobar arteriosclerosis (R = 0.603, P < 0.01) was linearly correlated with the severity of islet amyloid deposits. CONCLUSIONS Pancreatic angiopathy might be both a cause and a consequence of islet amyloid and T2D.
Collapse
|
4
|
Ueberberg S, Nauck MA, Uhl W, Montemurro C, Tannapfel A, Clark A, Meier JJ. Islet Amyloid in Patients With Diabetes Due to Exocrine Pancreatic Disorders, Type 2 Diabetes, and Nondiabetic Patients. J Clin Endocrinol Metab 2020; 105:5818378. [PMID: 32271378 DOI: 10.1210/clinem/dgaa176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/08/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Amyloid deposits are a typical finding in pancreatic islets from patients with type 2 diabetes. Whether this is linked to the pathogenesis of type 2 diabetes is currently unknown. Therefore, we compared the occurrence of islet amyloid in patients with type 2 diabetes, diabetes secondary to pancreatic disorders, and nondiabetic individuals. PATIENTS AND METHODS Pancreatic tissue from 15 nondiabetic patients, 22 patients with type 2 diabetes, and 11 patients with diabetes due to exocrine pancreatic disorders (chronic pancreatitis, pancreatic carcinoma) were stained for insulin, amyloid, and apoptosis. β-cell area, amyloid deposits, and β-cell apoptosis were quantified by morphometric analysis. RESULTS The proportion of islets containing amyloid deposits was significantly higher in both type 2 diabetes and diabetes due to exocrine pancreatic disorders than in healthy subjects. Islets with both amyloid and apoptosis were observed more frequently in type 2 diabetes and significantly more so in diabetes due to exocrine pancreatic disorders. In both diabetic groups, apoptotic ß-cells were found significantly more frequently in islets with more prominent amyloid deposits. CONCLUSIONS The occurrence of amyloid deposits in both type 2 diabetes and diabetes secondary to exocrine pancreatic disorders suggests that islet amyloid formation is a common feature of diabetes mellitus of different etiologies and may be associated with a loss of pancreatic ß-cells.
Collapse
Affiliation(s)
- Sandra Ueberberg
- Diabetes Division St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Michael A Nauck
- Diabetes Division St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Waldemar Uhl
- Department of General and Visceral Surgery, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Chiara Montemurro
- Diabetes Division St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
- David Geffen School of Medicine, University of California, Los Angeles, CA, US
| | | | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Juris J Meier
- Diabetes Division St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Ling W, Huang YM, Qiao YC, Zhang XX, Zhao HL. Human Amylin: From Pathology to Physiology and Pharmacology. Curr Protein Pept Sci 2019; 20:944-957. [DOI: 10.2174/1389203720666190328111833] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/18/2022]
Abstract
The histopathological hallmark of type 2 diabetes is islet amyloid implicated in the developing treatment options. The major component of human islet amyloid is 37 amino acid peptide known as amylin or islet amyloid polypeptide (IAPP). Amylin is an important hormone that is co-localized, copackaged, and co-secreted with insulin from islet β cells. Physiologically, amylin regulates glucose homeostasis by inhibiting insulin and glucagon secretion. Furthermore, amylin modulates satiety and inhibits gastric emptying via the central nervous system. Normally, human IAPP is soluble and natively unfolded in its monomeric state. Pathologically, human IAPP has a propensity to form oligomers and aggregate. The oligomers show misfolded α-helix conformation and can further convert themselves to β-sheet-rich fibrils as amyloid deposits. The pathological findings and physiological functions of amylin have led to the introduction of pramlintide, an amylin analog, for the treatment of diabetes. The history of amylin’s discovery is a representative example of how a pathological finding can translate into physiological exploration and lead to pharmacological intervention. Understanding the importance of transitioning from pathology to physiology and pharmacology can provide novel insight into diabetes mellitus and Alzheimer's disease.
Collapse
Affiliation(s)
- Wei Ling
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Yan-Mei Huang
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Yong-Chao Qiao
- Department of Laboratory, the Affiliated Hospital of Guilin Medical University, Guilin 541004, China
| | - Xiao-Xi Zhang
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Hai-Lu Zhao
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
6
|
Desai MK, Brinton RD. Autoimmune Disease in Women: Endocrine Transition and Risk Across the Lifespan. Front Endocrinol (Lausanne) 2019; 10:265. [PMID: 31110493 PMCID: PMC6501433 DOI: 10.3389/fendo.2019.00265] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Women have a higher incidence and prevalence of autoimmune diseases than men, and 85% or more patients of multiple autoimmune diseases are female. Women undergo sweeping endocrinological changes at least twice during their lifetime, puberty and menopause, with many women undergoing an additional transition: pregnancy, which may or may not be accompanied by breastfeeding. These endocrinological transitions exert significant effects on the immune system due to interactions between the hormonal milieu, innate, and adaptive immune systems as well as pro- and anti-inflammatory cytokines, and thereby modulate the susceptibility of women to autoimmune diseases. Conversely, pre-existing autoimmune diseases themselves impact endocrine transitions. Concentration-dependent effects of estrogen on the immune system; the role of progesterone, androgens, leptin, oxytocin, and prolactin; and the interplay between Th1 and Th2 immune responses together maintain a delicate balance between host defense, immunological tolerance and autoimmunity. In this review, multiple autoimmune diseases have been analyzed in the context of each of the three endocrinological transitions in women. We provide evidence from human epidemiological data and animal studies that endocrine transitions exert profound impact on the development of autoimmune diseases in women through complex mechanisms. Greater understanding of endocrine transitions and their role in autoimmune diseases could aid in prediction, prevention, and cures of these debilitating diseases in women.
Collapse
Affiliation(s)
- Maunil K. Desai
- School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
- Departments of Pharmacology and Neurology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
7
|
Zhang XX, Qiao YC, Li W, Zou X, Chen YL, Shen J, Liao QY, Zhang QJ, He L, Zhao HL. Human amylin induces CD4+Foxp3+ regulatory T cells in the protection from autoimmune diabetes. Immunol Res 2019; 66:179-186. [PMID: 28983871 DOI: 10.1007/s12026-017-8956-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Autoimmune diabetes is a disorder of immune homeostasis that leads to targeted insulin-secreting islet β cell destruction characterized by insulitis. Human amylin (hA) is an important neuroendocrine hormone co-secreted with insulin by pancreatic β cells. Here, we report hA immune-modulatory action through inducing regulatory T cells. We ex vivo-treated human peripheral blood mononuclear cells (hPBMCs) with hA for 24 h and counted CD4+Foxp3+ regulatory T cells (Treg) using flow cytometry. Diabetic status was monitored and splenic Treg were measured in non-obese diabetic (NOD) male mice. NOD mice were intraperitoneally injected once daily with hA (n = 25) or solvent for control (n = 25) for 7 months continuously. Spleen tissues were collected at the end of intervention and processed for flow cytometry and Western blot. We found a 2.9-fold (p < 0.05) increase of CD4+Foxp3+ Treg in hPBMCs treated with 10 nmol/L hA compared with negative control. Incidence of diabetes in hA-treated NOD mice decreased 44% (p = 0.045) in the 6th month and 57% (p = 0.0002) in the 7th month. Meanwhile, the hA treatment induced a 1.5-fold increase of CD4+Foxp3+ Treg from mouse splenocytes (p = 0.0013). Expression of transforming growth factor-β (TGF-β) and toll-like receptor-4 (TLR-4) were upregulated in hA-treated mice. Human amylin might protect against autoimmune diabetes via the induction of CD4+Foxp3+ Treg, which suggests a novel approach to improve autoimmune conditions.
Collapse
Affiliation(s)
- Xiao-Xi Zhang
- Centre of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, Guangxi, 541004, China
| | - Yong-Chao Qiao
- Department of Immunology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Wan Li
- Centre of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, Guangxi, 541004, China
| | - Xia Zou
- Centre of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, Guangxi, 541004, China
| | - Yin-Ling Chen
- Centre of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, Guangxi, 541004, China
| | - Jian Shen
- Centre of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, Guangxi, 541004, China
| | - Qin-Yuan Liao
- Centre of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, Guangxi, 541004, China
| | - Qiu-Jin Zhang
- Centre of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, Guangxi, 541004, China
| | - Lan He
- Department of Microbiology, Prince of Wales Hospital, Shatin, Hong Kong
| | - Hai-Lu Zhao
- Centre of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, Guangxi, 541004, China. .,Department of Immunology, Guilin Medical University, Guilin, Guangxi, 541004, China.
| |
Collapse
|
8
|
Denroche HC, Verchere CB. IAPP and type 1 diabetes: implications for immunity, metabolism and islet transplants. J Mol Endocrinol 2018; 60:R57-R75. [PMID: 29378867 DOI: 10.1530/jme-17-0138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 01/12/2023]
Abstract
Islet amyloid polypeptide (IAPP), the main component of islet amyloid in type 2 diabetes and islet transplants, is now recognized as a contributor to beta cell dysfunction. Increasingly, evidence warrants its investigation in type 1 diabetes owing to both its immunomodulatory and metabolic actions. Autoreactive T cells to IAPP-derived epitopes have been described in humans, suggesting that IAPP is an islet autoantigen in type 1 diabetes. In addition, although aggregates of IAPP have not been implicated in type 1 diabetes, they are potent pro-inflammatory stimuli to innate immune cells, and thus, could influence autoimmunity. IAPP aggregates also occur rapidly in transplanted islets and likely contribute to islet transplant failure in type 1 diabetes through sterile inflammation. In addition, since type 1 diabetes is a disease of both insulin and IAPP deficiency, clinical trials have examined the potential benefits of IAPP replacement in type 1 diabetes with the injectable IAPP analogue, pramlintide. Pramlintide limits postprandial hyperglycemia by delaying gastric emptying and suppressing hyperglucagonemia, underlining the possible role of IAPP in postprandial glucose metabolism. Here, we review IAPP in the context of type 1 diabetes: from its potential involvement in type 1 diabetes pathogenesis, through its role in glucose metabolism and use of IAPP analogues as therapeutics, to its potential role in clinical islet transplant failure and considerations in this regard for future beta cell replacement strategies.
Collapse
Affiliation(s)
- Heather C Denroche
- Department of Surgery, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - C Bruce Verchere
- Department of Surgery, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Amylin and diabetic cardiomyopathy - amylin-induced sarcolemmal Ca 2+ leak is independent of diabetic remodeling of myocardium. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1923-1930. [PMID: 29066284 DOI: 10.1016/j.bbadis.2017.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/06/2017] [Accepted: 10/16/2017] [Indexed: 02/08/2023]
Abstract
Amylin is a pancreatic β-cell hormone co-secreted with insulin, plays a role in normal glucose homeostasis, and forms amyloid in the pancreatic islets of individuals with type-2 diabetes. Aggregated amylin is also found in blood and extra-pancreatic tissues, including myocardium. Myocardial amylin accumulation is associated with myocyte Ca2+ dysregulation in diabetic rats expressing human amylin. Whether deposition of amylin in the heart is a consequence of or a contributor to diabetic cardiomyopathy remains unknown. We used amylin knockout (AKO) mice intravenously infused with either human amylin (i.e, the aggregated form) or non-amyloidogenic (i.e., monomeric) rodent amylin to test the hypothesis that aggregated amylin accumulates in the heart in the absence of diabetes. AKO mice infused with human amylin, but not rodent amylin, showed amylin deposits in the myocardium. Cardiac amylin level was larger in males compared to females. Sarcolemmal Ca2+ leak and Ca2+ transients were increased in myocytes isolated from males infused with human amylin while no significant changes occurred in either females injected with human amylin or in rat amylin-infused mice. In isolated cardiac myocytes, the amylin receptor antagonist AC-187 did not effectively block the interaction of amylin with the sarcolemma. In conclusion, circulating aggregated amylin accumulates preferentially in male vs. female hearts and its effects on myocyte Ca2+ cycling do not require diabetic remodeling of the myocardium. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.
Collapse
|
10
|
Coulibaly B, Delage-Corre M, Durand-Fontanier S, Mathonnet M, Paraf F, Labrousse F. [Two cases reports of pancreatic endocrine microadenoma incidentally found]. Ann Pathol 2013; 33:406-9. [PMID: 24331723 DOI: 10.1016/j.annpat.2013.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/08/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
A 59-year-old male, was admitted to our hospital for a tumor of the pancreatic tail. Serum CEA and CA 19-9 levels were normal. Splenopancreasectomy found a desmoid tumour. A 69-year-old male was referred to our institution for chronic anemia and inflammatory syndrome with splenomegaly. Splenectomy showed an important splenic congestion and siderosis. Both patients had a type 2 diabetes mellitus. Furthermore, histological examination revealed pancreatic endocrine microadenomas. The two patients' postoperative course was unremarkable. Eleven and 24 months respectively after the diagnosis, the patients are alive and well, with no tumor recurrence.
Collapse
Affiliation(s)
- Béma Coulibaly
- Service d'anatomie pathologie, CHU Dupuytren, 2, avenue Martin-Luther-King, 87042 Limoges cedex, France.
| | - Manuela Delage-Corre
- Service d'anatomie pathologie, CHU Dupuytren, 2, avenue Martin-Luther-King, 87042 Limoges cedex, France
| | - Sylvaine Durand-Fontanier
- Service de chirurgie digestive et endocrinienne, CHU Dupuytren, 2, avenue Martin-Luther-King, 87042 Limoges cedex, France
| | - Muriel Mathonnet
- Service de chirurgie digestive et endocrinienne, CHU Dupuytren, 2, avenue Martin-Luther-King, 87042 Limoges cedex, France
| | - François Paraf
- Service d'anatomie pathologie, CHU Dupuytren, 2, avenue Martin-Luther-King, 87042 Limoges cedex, France
| | - François Labrousse
- Service d'anatomie pathologie, CHU Dupuytren, 2, avenue Martin-Luther-King, 87042 Limoges cedex, France
| |
Collapse
|
11
|
Ho SW, Tsui YTC, Wong TT, Cheung SKK, Goggins WB, Yi LM, Cheng KK, Baum L. Effects of 17-allylamino-17-demethoxygeldanamycin (17-AAG) in transgenic mouse models of frontotemporal lobar degeneration and Alzheimer's disease. Transl Neurodegener 2013; 2:24. [PMID: 24344631 PMCID: PMC3878847 DOI: 10.1186/2047-9158-2-24] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/13/2013] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD), the most common dementia, is characterized by potentially neurotoxic aggregation of Aβ peptide and tau protein, and their deposition as amyloid plaques and neurofibrillary tangles (NFTs). Tau aggregation also occurs in other common neurodegenerative diseases. Frontotemporal dementia (FTD) can be caused by tau mutations that increase the susceptibility of tau to hyperphosphorylation and aggregation, which may cause neuronal dysfunction and deposition of NFTs. 17-allylamino-17-demethoxygeldanamycin (17-AAG) is a potent inhibitor of heat shock protein 90 (Hsp90), a cytosolic chaperone implicated in the proper folding and functions of a repertoire of client proteins. 17-AAG binds to Hsp90 and enhances degradation of Hsp90 client protein. We sought to determine whether 17-AAG can reduce Aβ and tau pathology in the brains of AD and FTD model mice expressing Aβ or P301L mutant tau, respectively. Mice were randomized to receive 25, 5, or 0 mg/kg 17-AAG thrice weekly from age eight to 11 months. Analysis was performed by rotarod test on motor function, on the area occupied by plaques in hippocampus or NFTs in medulla tissue sections, and on mortality. A high dose of 17-AAG tended to decrease NFTs in male mice (p = 0.08). Further studies are required to confirm the effect of 17-AAG in diseases of tau aggregation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Larry Baum
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
12
|
Zhao H, Guan J, Lee HM, Sui Y, He L, Siu JJ, Tse PPP, Tong PCY, Lai FMM, Chan JCN. Up-regulated pancreatic tissue microRNA-375 associates with human type 2 diabetes through beta-cell deficit and islet amyloid deposition. Pancreas 2010; 39:843-6. [PMID: 20467341 DOI: 10.1097/mpa.0b013e3181d12613] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVES The aim of this study was to examine correlations of the islet-specific microRNA-375 expression to islet amyloid formation and pancreatic islet damage in human type 2 diabetes. METHODS Autopsy pancreas samples from 40 type 2 diabetic and 15 nondiabetic patients were used to detect microRNA-375 expression using real-time quantitative polymerase chain reaction. Serial paraffin sections of the corresponding type 2 diabetic and nondiabetic cases were stained by immunofluorescence to evaluate for amylin expression, amyloid formation, and proportions of alpha and beta cells. RESULTS Pancreatic microRNA-375 expression was increased in type 2 diabetic patients comparing with the nondiabetic patients (median, 4.02 for the diabetic patients vs 0.92 for the nondiabetic patients; P = 0.0001). The median was 6.14 for the diabetic patients with islet amyloid and 3.51 for islet amyloid-free diabetic patients. The expression level of microRNA-375 correlated positively with the frequency and the severity of islet amyloid formation and negatively with proportions of islet beta-cells and amylin-positive area, and islet mitochondria density. CONCLUSIONS Up-regulated microRNA-375 is associated with type 2 diabetes and pancreatic islet amyloid formation and beta-cell deficit. microRNA-375 may serve as a biomarker for known and novel pathways in the pathogenesis of type 2 diabetes related to islet amyloid deposition and beta-cell dysfunction.
Collapse
Affiliation(s)
- Hailu Zhao
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|