1
|
Walker J, Babyok OL, Saloman JL, Phillips AE. Recent advances in the understanding and management of chronic pancreatitis pain. JOURNAL OF PANCREATOLOGY 2024; 7:35-44. [PMID: 38524856 PMCID: PMC10959534 DOI: 10.1097/jp9.0000000000000163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/09/2023] [Indexed: 03/26/2024] Open
Abstract
Abdominal pain is the most common symptom of chronic pancreatitis (CP) and is often debilitating for patients and very difficult to treat. To date, there exists no cure for the disease. Treatment strategies focus on symptom management and on mitigation of disease progression by reducing toxin exposure and avoiding recurrent inflammatory events. Traditional treatment protocols start with medical management followed by consideration of procedural or surgical intervention on selected patients with severe and persistent pain. The incorporation of adjuvant therapies to treat comorbidities including psychiatric disorders, exocrine pancreatic insufficiency, mineral bone disease, frailty, and malnutrition, are in its early stages. Recent clinical studies and animal models have been designed to improve investigation into the pathophysiology of CP pain, as well as to improve pain management. Despite the array of tools available, many therapeutic options for the management of CP pain provide incomplete relief. There still remains much to discover about the neural regulation of pancreas-related pain. In this review, we will discuss research from the last 5 years that has provided new insights into novel methods of pain phenotyping and the pathophysiology of CP pain. These discoveries have led to improvements in patient selection for optimization of outcomes for both medical and procedural management, and identification of potential future therapies.
Collapse
Affiliation(s)
- Jessica Walker
- Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Olivia L. Babyok
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jami L. Saloman
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anna Evans Phillips
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Yi J, Bertels Z, Del Rosario JS, Widman AJ, Slivicki RA, Payne M, Susser HM, Copits BA, Gereau RW. Bradykinin receptor expression and bradykinin-mediated sensitization of human sensory neurons. Pain 2024; 165:202-215. [PMID: 37703419 PMCID: PMC10723647 DOI: 10.1097/j.pain.0000000000003013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 09/15/2023]
Abstract
ABSTRACT Bradykinin is a peptide implicated in inflammatory pain in both humans and rodents. In rodent sensory neurons, activation of B1 and B2 bradykinin receptors induces neuronal hyperexcitability. Recent evidence suggests that human and rodent dorsal root ganglia (DRG), which contain the cell bodies of sensory neurons, differ in the expression and function of key GPCRs and ion channels; whether bradykinin receptor expression and function are conserved across species has not been studied in depth. In this study, we used human DRG tissue from organ donors to provide a detailed characterization of bradykinin receptor expression and bradykinin-induced changes in the excitability of human sensory neurons. We found that B2 and, to a lesser extent, B1 receptors are expressed by human DRG neurons and satellite glial cells. B2 receptors were enriched in the nociceptor subpopulation. Using patch-clamp electrophysiology, we found that acute bradykinin increases the excitability of human sensory neurons, whereas prolonged exposure to bradykinin decreases neuronal excitability in a subpopulation of human DRG neurons. Finally, our analyses suggest that donor's history of chronic pain and age may be predictors of higher B1 receptor expression in human DRG neurons. Together, these results indicate that acute bradykinin-induced hyperexcitability, first identified in rodents, is conserved in humans and provide further evidence supporting bradykinin signaling as a potential therapeutic target for treating pain in humans.
Collapse
Affiliation(s)
- Jiwon Yi
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Neuroscience Graduate Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Zachariah Bertels
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - John Smith Del Rosario
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Allie J. Widman
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Richard A. Slivicki
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Maria Payne
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Henry M. Susser
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Bryan A. Copits
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Robert W. Gereau
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neuroscience, Washington University, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
| |
Collapse
|
3
|
Wu Y, Han C, Luo R, Cai W, Xia Q, Jiang R, Ferdek PE, Liu T, Huang W. Molecular mechanisms of pain in acute pancreatitis: recent basic research advances and therapeutic implications. Front Mol Neurosci 2023; 16:1331438. [PMID: 38188196 PMCID: PMC10771850 DOI: 10.3389/fnmol.2023.1331438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
Although severe abdominal pain is the main symptom of acute pancreatitis, its mechanisms are poorly understood. An emerging body of literature evidence indicates that neurogenic inflammation might play a major role in modulating the perception of pain from the pancreas. Neurogenic inflammation is the result of a crosstalk between injured pancreatic tissue and activated neurons, which leads to an auto-amplification loop between inflammation and pain during the progression of acute pancreatitis. In this review, we summarize recent findings on the role of neuropeptides, ion channels, and the endocannabinoid system in acute pancreatitis-related pain. We also highlight potential therapeutic strategies that could be applied for managing severe pain in this disease.
Collapse
Affiliation(s)
- Yongzi Wu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxia Han
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Luo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenhao Cai
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Pawel E. Ferdek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
- Institutes for Systems Genetics and Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- West China Biobank, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Yi J, Bertels Z, Del Rosario JS, Widman AJ, Slivicki RA, Payne M, Susser HM, Copits BA, Gereau RW. Bradykinin receptor expression and bradykinin-mediated sensitization of human sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.534820. [PMID: 37034782 PMCID: PMC10081334 DOI: 10.1101/2023.03.31.534820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Bradykinin is a peptide implicated in inflammatory pain in both humans and rodents. In rodent sensory neurons, activation of B1 and B2 bradykinin receptors induces neuronal hyperexcitability. Recent evidence suggests that human and rodent dorsal root ganglia (DRG), which contain the cell bodies of sensory neurons, differ in the expression and function of key GPCRs and ion channels; whether BK receptor expression and function are conserved across species has not been studied in depth. In this study, we used human DRG tissue from organ donors to provide a detailed characterization of bradykinin receptor expression and bradykinin-induced changes in the excitability of human sensory neurons. We found that B2 and, to a lesser extent, B1 receptors are expressed by human DRG neurons and satellite glial cells. B2 receptors were enriched in the nociceptor subpopulation. Using patch-clamp electrophysiology, we found that acute bradykinin increases the excitability of human sensory neurons, while prolonged exposure to bradykinin decreases neuronal excitability in a subpopulation of human DRG neurons. Finally, our analyses suggest that donor’s history of chronic pain and age may be predictors of higher B1 receptor expression in human DRG neurons. Together, these results indicate that acute BK-induced hyperexcitability, first identified in rodents, is conserved in humans and provide further evidence supporting BK signaling as a potential therapeutic target for treating pain in humans.
Collapse
Affiliation(s)
- Jiwon Yi
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Zachariah Bertels
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - John Smith Del Rosario
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Allie J. Widman
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Richard A. Slivicki
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Maria Payne
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Henry M. Susser
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Bryan A. Copits
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Robert W. Gereau
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neuroscience, Washington University, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
| |
Collapse
|
5
|
Saloman JL, Tang G, Stello KM, Hall KE, Wang X, AlKaade S, Banks PA, Brand RE, Conwell DL, Coté GA, Forsmark CE, Gardner TB, Gelrud A, Lewis MD, Sherman S, Slivka A, Whitcomb DC, Yadav D. Serum biomarkers for chronic pancreatitis pain patterns. Pancreatology 2021; 21:1411-1418. [PMID: 34602367 PMCID: PMC8629935 DOI: 10.1016/j.pan.2021.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Chronic pancreatitis (CP) is associated with debilitating refractory pain. Distinct subtypes of CP pain have been previously characterized based on severity (none, mild-moderate, severe) and temporal (none, intermittent, constant) nature of pain, but no mechanism-based tools are available to guide pain management. This exploratory study was designed to determine if potential pain biomarkers could be detected in patient serum and whether they associate with specific pain patterns. METHODS Cytokines, chemokines, and peptides associated with nociception and pain were measured in legacy serum samples from CP patients (N = 99) enrolled in the North American Pancreatitis Studies. The unsupervised hierarchical cluster analysis was applied to cluster CP patients based on their biomarker profile. Classification and regression tree was used to assess whether these biomarkers can predict pain outcomes. RESULTS The hierarchical cluster analysis revealed a subset of patients with predominantly constant, mild-moderate pain exhibited elevated interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-2 (IL-2), tumor necrosis factor alpha (TNFα), and monocyte chemoattractant protein-1 (MCP1) whereas patients with higher interleukin-4 (IL-4), interleukin-8 (IL-8) and calcitonin gene related peptide (CGRP) were more likely to have severe pain. Interestingly, analyses of each individual biomarker revealed that patients with constant pain had reduced circulating TNFα and fractalkine. Patients with severe pain exhibited a significant reduction in TNFα as well as trends towards lower levels of IL-6 and substance P. DISCUSSION The observations from this study indicate that unique pain experiences within the chronic pancreatitis population can be associated with distinct biochemical signatures. These data indicate that further hypothesis-driven analyses combining biochemical measurements and detailed pain phenotyping could be used to develop precision approaches for pain management in patients with chronic pancreatitis.
Collapse
Affiliation(s)
- Jami L. Saloman
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Pittsburgh, PA, USA,Pittsburgh Center for Pain Research, School of Medicine, University of Pittsburgh, PA, USA,Department of Neurobiology, School of Medicine, University of Pittsburgh, PA, USA
| | - Gong Tang
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kimberly M. Stello
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Pittsburgh, PA, USA
| | - Kristen E. Hall
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Pittsburgh, PA, USA
| | - Xianling Wang
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Randall E. Brand
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Pittsburgh, PA, USA
| | - Darwin L. Conwell
- The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Gregory A. Coté
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Christopher E. Forsmark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, FL, USA
| | - Timothy B. Gardner
- Section of Gastroenterology and Hepatology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Andres Gelrud
- Department of Internal Medicine, Miami Cancer Institute, Gastro Health, Miami, FL, USA
| | - Michele D. Lewis
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Stuart Sherman
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adam Slivka
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Pittsburgh, PA, USA
| | - David C. Whitcomb
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Pittsburgh, PA, USA,Pittsburgh Center for Pain Research, School of Medicine, University of Pittsburgh, PA, USA,Departments of Cell Biology & Physiology, and Human Genetics, University of Pittsburgh, PA, USA
| | - Dhiraj Yadav
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Pittsburgh, PA, USA
| | | |
Collapse
|
6
|
Haberberger RV, Barry C, Matusica D. Immortalized Dorsal Root Ganglion Neuron Cell Lines. Front Cell Neurosci 2020; 14:184. [PMID: 32636736 PMCID: PMC7319018 DOI: 10.3389/fncel.2020.00184] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Pain is one of the most significant causes of suffering and disability world-wide, and arguably the most burdensome global health challenge. The growing number of patients suffering from chronic pain conditions such as fibromyalgia, complex regional pain syndrome, migraine and irritable bowel syndrome, not only reflect the complexity and heterogeneity of pain types, but also our lack of understanding of the underlying mechanisms. Sensory neurons within the dorsal root ganglia (DRG) have emerged as viable targets for effective chronic pain therapy. However, DRG's contain different classes of primary sensory neurons including pain-associated nociceptive neurons, non-nociceptive temperature sensing, mechanosensory and chemoreceptive neurons, as well as multiple types of immune and endothelial cells. This cell-population heterogeneity makes investigations of individual subgroups of DRG neurons, such as nociceptors, difficult. In attempts to overcome some of these difficulties, a limited number of immortalized DRG-derived cell lines have been generated over the past few decades. In vitro experiments using DRG-derived cell lines have been useful in understanding sensory neuron function. In addition to retaining phenotypic similarities to primary cultured DRG neurons, these cells offer greater suitability for high throughput assays due to ease of culture, maintenance, growth efficiency and cost-effectiveness. For accurate interpretation and translation of results it is critical, however, that phenotypic similarities and differences of DRG-derived cells lines are methodically compared to native neurons. Published reports to date show notable variability in how these DRG-derived cells are maintained and differentiated. Understanding the cellular and molecular differences stemming from different culture methods, is essential to validate past and future experiments, and enable these cells to be used to their full potential. This review describes currently available DRG-derived cell lines, their known sensory and nociceptor specific molecular profiles, and summarize their morphological features related to differentiation and neurite outgrowth.
Collapse
Affiliation(s)
- Rainer Viktor Haberberger
- Anatomy & Histology, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Christine Barry
- Anatomy & Histology, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Dusan Matusica
- Anatomy & Histology, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
7
|
Veronez CL, Maghsodi S, Todiras M, Popova E, Rodrigues AF, Qadri F, Pesquero JB, Bader M. Endothelial B2-receptor overexpression as an alternative animal model for hereditary angioedema. Allergy 2019; 74:1998-2002. [PMID: 31004495 DOI: 10.1111/all.13836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Camila Lopes Veronez
- Max‐Delbrück‐Center for Molecular Medicine (MDC)Berlin Germany
- Department of Biophysics Universidade Federal de São Paulo São Paulo Brazil
| | - Sara Maghsodi
- Max‐Delbrück‐Center for Molecular Medicine (MDC)Berlin Germany
- German Center for Cardiovascular Research (DZHK) Berlin Germany
| | - Mihail Todiras
- Max‐Delbrück‐Center for Molecular Medicine (MDC)Berlin Germany
- Nicolae Testemițanu State University of Medicine and Pharmacy Chișinău Moldova
| | - Elena Popova
- Max‐Delbrück‐Center for Molecular Medicine (MDC)Berlin Germany
| | | | | | | | - Michael Bader
- Max‐Delbrück‐Center for Molecular Medicine (MDC)Berlin Germany
- German Center for Cardiovascular Research (DZHK) Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
- Charite – University Medicine Berlin Germany
- Institute for Biology University of Lübeck Lübeck Germany
| |
Collapse
|
8
|
Saloman JL, Albers KM, Cruz-Monserrate Z, Davis BM, Edderkaoui M, Eibl G, Epouhe AY, Gedeon JY, Gorelick FS, Grippo PJ, Groblewski GE, Husain SZ, Lai KK, Pandol SJ, Uc A, Wen L, Whitcomb DC. Animal Models: Challenges and Opportunities to Determine Optimal Experimental Models of Pancreatitis and Pancreatic Cancer. Pancreas 2019; 48:759-779. [PMID: 31206467 PMCID: PMC6581211 DOI: 10.1097/mpa.0000000000001335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At the 2018 PancreasFest meeting, experts participating in basic research met to discuss the plethora of available animal models for studying exocrine pancreatic disease. In particular, the discussion focused on the challenges currently facing the field and potential solutions. That meeting culminated in this review, which describes the advantages and limitations of both common and infrequently used models of exocrine pancreatic disease, namely, pancreatitis and exocrine pancreatic cancer. The objective is to provide a comprehensive description of the available models but also to provide investigators with guidance in the application of these models to investigate both environmental and genetic contributions to exocrine pancreatic disease. The content covers both nongenic and genetically engineered models across multiple species (large and small). Recommendations for choosing the appropriate model as well as how to conduct and present results are provided.
Collapse
Affiliation(s)
- Jami L. Saloman
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Kathryn M. Albers
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition; Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Brian M. Davis
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Mouad Edderkaoui
- Basic and Translational Pancreas Research, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Ariel Y. Epouhe
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Jeremy Y. Gedeon
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Fred S. Gorelick
- Department of Internal Medicine, Section of Digestive Diseases & Department of Cell Biology Yale University School of Medicine; Veterans Affairs Connecticut Healthcare, West Haven, CT
| | - Paul J. Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, UI Cancer Center, University of Illinois at Chicago, Chicago, IL
| | - Guy E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | | | - Keane K.Y. Lai
- Department of Pathology (National Medical Center), Department of Molecular Medicine (Beckman Research Institute), and Comprehensive Cancer Center, City of Hope, Duarte, CA
| | - Stephen J. Pandol
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Aliye Uc
- Stead Family Department of Pediatrics, University of Iowa, Stead Family Children’s Hospital, Iowa City, IA
| | - Li Wen
- Department of Pediatrics, Stanford University, Palo Alto, CA
| | | |
Collapse
|
9
|
Schiene K, Schröder W, Linz K, Frosch S, Tzschentke TM, Christoph T, Xie JY, Porreca F. Inhibition of experimental visceral pain in rodents by cebranopadol. Behav Pharmacol 2019; 30:320-326. [DOI: 10.1097/fbp.0000000000000420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Veronez CL, Campos RA, Constantino-Silva RN, Nicolicht P, Pesquero JB, Grumach AS. Hereditary Angioedema-Associated Acute Pancreatitis in C1-Inhibitor Deficient and Normal C1-Inhibitor Patients: Case Reports and Literature Review. Front Med (Lausanne) 2019; 6:80. [PMID: 31058156 PMCID: PMC6478673 DOI: 10.3389/fmed.2019.00080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Abdominal pain due to intestinal swellings is one of the most common manifestations in hereditary angioedema (HAE). Bowel swellings can cause severe abdominal pain, nausea, vomiting, and diarrhea, which may lead to misdiagnosis of gastrointestinal disorders. In rare cases, HAE abdominal attacks can be accompanied by acute pancreatitis. Here, we report 3 patients with HAE and acute pancreatitis and present a literature review of similar cases. Patients with confirmed diagnosis of HAE secondary to C1-inhibitor (C1-INH) deficiency (n = 2) and HAE with normal C1-INH and F12 mutation (F12-HAE) (n = 1) were included. Pancreatitis was diagnosed based on clinical symptoms and high lipase and amylase levels. Three HAE patients were diagnosed with acute pancreatitis based on increased amylase levels during severe abdominal swelling episodes. Two were previously diagnosed with HAE type I and one with F12-HAE. Pancreatitis was efficiently treated in two patients using Icatibant, with pain relief within hours. When conservatively treated, pancreatitis pain took longer time to resolve. Eighteen pancreatitis cases in HAE with C1-INH deficiency were previously reported and none in F12-HAE. Most patients (12/18) underwent invasive procedures and/or diagnostic methods. Although rare, severe abdominal HAE attacks could cause pancreatitis; HAE-specific treatments may be efficient for HAE-associated pancreatitis. HAE should be considered as a differential diagnosis of acute idiopathic pancreatitis. To our knowledge, this is the first report of HAE-associated pancreatitis in a F12-HAE patient treated with Icatibant.
Collapse
Affiliation(s)
| | | | | | - Priscila Nicolicht
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João Bosco Pesquero
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
11
|
Klauss S, Schorn S, Teller S, Steenfadt H, Friess H, Ceyhan GO, Demir IE. Genetically induced vs. classical animal models of chronic pancreatitis: a critical comparison. FASEB J 2018; 32:fj201800241RR. [PMID: 29863911 DOI: 10.1096/fj.201800241rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Chronic pancreatitis (CP) is an utmost complex disease that is pathogenetically linked to pancreas-intrinsic ( e.g., duct obstruction), environmental-toxic ( e.g., alcohol, smoking), and genetic factors. Studying such a complex disease naturally requires validated experimental models. In the past 2 decades, the various animal models of CP usually addressed either the pancreas-intrinsic ( e.g., the caerulein model), the environmental-toxic ( e.g., diet-induced models), or the genetic component of CP. As such, these models were far from mirroring CP in its full spectrum, and the correct choice of models was vital for valid scientific conclusions on CP. The quest for mechanistic, genetic models gave rise to models based on gene modification and transgene insertion, such as the PRSS1 and the IL-1β/IL-1β models. Recently, we witnessed the development of highly exciting models that rely on the importance of autophagy in CP, that is, the murine pancreas-specific Atg5 and LAMP2 knockout models. Today, critical comparison of these several models is more important than ever for guiding research on CP in an efficient direction. The present review outlines the characteristics of the new genetic models in comparison with the well-known classic models for CP, notes the caveats in the choice of models, and also indicates novel directions for model development.-Klauss, S., Schorn, S., Teller, S., Steenfadt, H., Friess, H., Ceyhan, G. O., Demir, I. K. Genetically induced vs. classical animal models of chronic pancreatitis: a critical comparison.
Collapse
Affiliation(s)
- Sarah Klauss
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan Schorn
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Steffen Teller
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hendrik Steenfadt
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
Lynch JJ, Van Vleet TR, Mittelstadt SW, Blomme EAG. Potential functional and pathological side effects related to off-target pharmacological activity. J Pharmacol Toxicol Methods 2017; 87:108-126. [PMID: 28216264 DOI: 10.1016/j.vascn.2017.02.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/24/2017] [Accepted: 02/15/2017] [Indexed: 12/22/2022]
Abstract
Most pharmaceutical companies test their discovery-stage proprietary molecules in a battery of in vitro pharmacology assays to try to determine off-target interactions. During all phases of drug discovery and development, various questions arise regarding potential side effects associated with such off-target pharmacological activity. Here we present a scientific literature curation effort undertaken to determine and summarize the most likely functional and pathological outcomes associated with interactions at 70 receptors, enzymes, ion channels and transporters with established links to adverse effects. To that end, the scientific literature was reviewed using an on-line database, and the most commonly reported effects were summarized in tabular format. The resultant table should serve as a practical guide for research scientists and clinical investigators for the prediction and interpretation of adverse side effects associated with molecules interacting with components of this screening battery.
Collapse
Affiliation(s)
- James J Lynch
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA.
| | | | | | - Eric A G Blomme
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA
| |
Collapse
|
13
|
|
14
|
Inflammatory profiling of early experimental necrotizing pancreatitis. Life Sci 2015; 126:76-80. [PMID: 25711429 DOI: 10.1016/j.lfs.2015.01.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/30/2014] [Accepted: 01/20/2015] [Indexed: 01/26/2023]
Abstract
AIMS Inflammatory mediators play a pivotal role in severe necrotizing pancreatitis (SNP). Therapeutic approaches aim at the early inflammatory liberation of cytokines to avoid systemic complications. The present study evaluates the kinetics of inflammatory mediator release in SNP. MAIN METHODS Experimental SNP was induced in male Wistar rats using the GDOC model. The animals were allocated into seven groups (n = 6/group). In group 1, sample harvesting was performed after sham operation while in groups 2-7 this was performed 1 h, 2 h, 4 h, 6 h, 9 h, and 12 h after initiation of SNP, respectively. Inflammatory mediator release,morphologic injury, and tissue MPO concentrations were evaluated between 1 and 12 h after induction. KEY FINDINGS Pancreatic injury showed a continuous increase over the observation period (p b 0.05, respectively). MPO levels in the pancreas and lungs increased until 12 h after induction (p b 0.05, respectively). Antiinflammatory IL-10 showed an early peak and the pro-inflammatory mediators TNFα and IL-1β peaked after 6 and 9 h, respectively (p b 0.05, respectively). HMGB1 levels constantly increased over time (p b 0.05, respectively). SIGNIFICANCE The present study shows the release of relevant pro- and anti-inflammatory mediators in SNP for the first time in one single experimental setup. Inflammatory mediators peak within the first few hours after SNP induction. Consequently, the effect of therapeutic approaches on early changes in cytokine release should be evaluated later than 2 h after initiation.
Collapse
|
15
|
Non-canonical signalling and roles of the vasoactive peptides angiotensins and kinins. Clin Sci (Lond) 2014; 126:753-74. [DOI: 10.1042/cs20130414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GPCRs (G-protein-coupled receptors) are among the most important targets for drug discovery due to their ubiquitous expression and participation in cellular events under both healthy and disease conditions. These receptors can be activated by a plethora of ligands, such as ions, odorants, small ligands and peptides, including angiotensins and kinins, which are vasoactive peptides that are classically involved in the pathophysiology of cardiovascular events. These peptides and their corresponding GPCRs have been reported to play roles in other systems and under pathophysiological conditions, such as cancer, central nervous system disorders, metabolic dysfunction and bone resorption. More recently, new mechanisms have been described for the functional regulation of GPCRs, including the transactivation of other signal transduction receptors and the activation of G-protein-independent pathways. The existence of such alternative mechanisms for signal transduction and the discovery of agonists that can preferentially trigger one signalling pathway over other pathways (called biased agonists) have opened new perspectives for the discovery and development of drugs with a higher specificity of action and, therefore, fewer side effects. The present review summarizes the current knowledge on the non-canonical signalling and roles of angiotensins and kinins.
Collapse
|
16
|
A systematic review of the evidence for central nervous system plasticity in animal models of inflammatory-mediated gastrointestinal pain. Inflamm Bowel Dis 2014; 20:176-95. [PMID: 24284415 DOI: 10.1097/01.mib.0000437499.52922.b1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Abdominal pain frequently accompanies inflammatory disorders of the gastrointestinal tract (GIT), and animal models of GIT inflammation have been developed to explore the role of the central nervous system (CNS) in this process. Here, we summarize the evidence from animal studies for CNS plasticity following GIT inflammation. METHODS A systematic review was conducted to identify studies that: (1) used inflammation of GIT organs, (2) assessed pain or visceral hypersensitivity, and (3) presented evidence of CNS involvement. Two hundred and eight articles were identified, and 79 were eligible for analysis. RESULTS Rats were most widely used (76%). Most studies used adult animals (42%) with a bias toward males (74%). Colitis was the most frequently used model (78%) and 2,4,6-trinitrobenzenesulfonic acid the preferred inflammatory agent (33%). Behavioral (58%), anatomical/molecular (44%), and physiological (24%) approaches were used alone or in combination to assess CNS involvement during or after GIT inflammation. Measurement times varied widely (<1 h-> 2 wk after inflammation). Blinded outcomes were used in 42% studies, randomization in 10%, and evidence of visceral inflammation in 54%. Only 3 studies fulfilled our criteria for high methodological quality, and no study reported sample size calculations. CONCLUSIONS The included studies provide strong evidence for CNS plasticity following GIT inflammation, specifically in the spinal cord dorsal horn. This evidence includes altered visceromotor responses and indices of referred pain, elevated neural activation and peptide content, and increased neuronal excitability. This evidence supports continued use of this approach for preclinical studies; however, there is substantial scope to improve study design.
Collapse
|
17
|
Abstract
OBJECTIVES The endogenous immune response is influenced by the stimulation of the vagal nerve. Stimulation or ablation has a direct impact on the release of pro- and anti-inflammatory mediators. In the progression of acute pancreatitis from local to systemic disease, these mediators play a pivotal role. This study evaluates the effect of pharmacologic stimulation of the cholinergic system on pancreatic damage in experimental necrotizing pancreatitis. METHODS Experimental severe necrotizing pancreatitis was induced in male Wistar rats using the glycodeoxycholic acid model. Animals with acute pancreatitis (n = 6) were compared with animals with acute pancreatitis and prophylactic or therapeutic pharmacologic activation of the cholinergic system using nicotine, physostigmine, or neostigmine (n = 36). Twelve hours after the induction of acute pancreatitis, morphological damage as well as the myeloperoxidase levels of the pancreas and the serum levels of high-mobility group box 1 protein were evaluated. RESULTS Prophylactic and delayed therapeutic application of nicotine, physostigmine, or neostigmine significantly attenuated the severity of acute pancreatitis 12 hours after the induction of severe necrotizing pancreatitis compared with untreated controls as evaluated with histological scores, myeloperoxidase, and high-mobility group box 1 levels (P < 0.05). CONCLUSIONS Stimulation of the cholinergic system is useful to attenuate damage in experimental acute pancreatitis. Not only prophylactic but also delayed application was effective in the present study.
Collapse
|
18
|
Lerch MM, Gorelick FS. Models of acute and chronic pancreatitis. Gastroenterology 2013; 144:1180-93. [PMID: 23622127 DOI: 10.1053/j.gastro.2012.12.043] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/06/2012] [Accepted: 12/13/2012] [Indexed: 12/16/2022]
Abstract
Animal models of acute and chronic pancreatitis have been created to examine mechanisms of pathogenesis, test therapeutic interventions, and study the influence of inflammation on the development of pancreatic cancer. In vitro models can be used to study early stage, short-term processes that involve acinar cell responses. Rodent models reproducibly develop mild or severe disease. One of the most commonly used pancreatitis models is created by administration of supraphysiologic concentrations of caerulein, an ortholog of cholecystokinin. Induction of chronic pancreatitis with factors thought to have a role in human disease, such as combinations of lipopolysaccharide and chronic ethanol feeding, might be relevant to human disease. Models of autoimmune chronic pancreatitis have also been developed. Most models, particularly of chronic pancreatitis, require further characterization to determine which features of human disease they include.
Collapse
Affiliation(s)
- Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, Greifswald, Germany.
| | | |
Collapse
|
19
|
Petho G, Reeh PW. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol Rev 2013; 92:1699-775. [PMID: 23073630 DOI: 10.1152/physrev.00048.2010] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peripheral mediators can contribute to the development and maintenance of inflammatory and neuropathic pain and its concomitants (hyperalgesia and allodynia) via two mechanisms. Activation or excitation by these substances of nociceptive nerve endings or fibers implicates generation of action potentials which then travel to the central nervous system and may induce pain sensation. Sensitization of nociceptors refers to their increased responsiveness to either thermal, mechanical, or chemical stimuli that may be translated to corresponding hyperalgesias. This review aims to give an account of the excitatory and sensitizing actions of inflammatory mediators including bradykinin, prostaglandins, thromboxanes, leukotrienes, platelet-activating factor, and nitric oxide on nociceptive primary afferent neurons. Manifestations, receptor molecules, and intracellular signaling mechanisms of the effects of these mediators are discussed in detail. With regard to signaling, most data reported have been obtained from transfected nonneuronal cells and somata of cultured sensory neurons as these structures are more accessible to direct study of sensory and signal transduction. The peripheral processes of sensory neurons, where painful stimuli actually affect the nociceptors in vivo, show marked differences with respect to biophysics, ultrastructure, and equipment with receptors and ion channels compared with cellular models. Therefore, an effort was made to highlight signaling mechanisms for which supporting data from molecular, cellular, and behavioral models are consistent with findings that reflect properties of peripheral nociceptive nerve endings. Identified molecular elements of these signaling pathways may serve as validated targets for development of novel types of analgesic drugs.
Collapse
Affiliation(s)
- Gábor Petho
- Pharmacodynamics Unit, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | | |
Collapse
|
20
|
Abstract
This paper is the thirty-third consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2010 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
21
|
Ossipov MH, Dussor GO, Porreca F. Central modulation of pain. J Clin Invest 2010; 120:3779-87. [PMID: 21041960 DOI: 10.1172/jci43766] [Citation(s) in RCA: 748] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
It has long been appreciated that the experience of pain is highly variable between individuals. Pain results from activation of sensory receptors specialized to detect actual or impending tissue damage (i.e., nociceptors). However, a direct correlation between activation of nociceptors and the sensory experience of pain is not always apparent. Even in cases in which the severity of injury appears similar, individual pain experiences may vary dramatically. Emotional state, degree of anxiety, attention and distraction, past experiences, memories, and many other factors can either enhance or diminish the pain experience. Here, we review evidence for "top-down" modulatory circuits that profoundly change the sensory experience of pain.
Collapse
Affiliation(s)
- Michael H Ossipov
- Department of Pharmacology, University of Arizona, Tucson, Arizona 85724, USA
| | | | | |
Collapse
|