1
|
Ghali GZ, Ghali MGZ. Nafamostat mesylate attenuates the pathophysiologic sequelae of neurovascular ischemia. Neural Regen Res 2020; 15:2217-2234. [PMID: 32594033 PMCID: PMC7749469 DOI: 10.4103/1673-5374.284981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nafamostat mesylate, an apparent soi-disant panacea of sorts, is widely used to anticoagulate patients undergoing hemodialysis or cardiopulmonary bypass, mitigate the inflammatory response in patients diagnosed with acute pancreatitis, and reverse the coagulopathy of patients experiencing the commonly preterminal disseminated intravascular coagulation in the Far East. The serine protease inhibitor nafamostat mesylate exhibits significant neuroprotective effects in the setting of neurovascular ischemia. Nafamostat mesylate generates neuroprotective effects by attenuating the enzymatic activity of serine proteases, neuroinflammatory signaling cascades, and the endoplasmic reticulum stress responses, downregulating excitotoxic transient receptor membrane channel subfamily 7 cationic currents, modulating the activity of intracellular signal transduction pathways, and supporting neuronal survival (brain-derived neurotrophic factor/TrkB/ERK1/2/CREB, nuclear factor kappa B. The effects collectively reduce neuronal necrosis and apoptosis and prevent ischemia mediated disruption of blood-brain barrier microarchitecture. Investigational clinical applications of these compounds may mitigate ischemic reperfusion injury in patients undergoing cardiac, hepatic, renal, or intestinal transplant, preventing allograft rejection, and treating solid organ malignancies. Neuroprotective effects mediated by nafamostat mesylate support the wise conduct of randomized prospective controlled trials in Western countries to evaluate the clinical utility of this compound.
Collapse
Affiliation(s)
- George Zaki Ghali
- United States Environmental Protection Agency, Arlington, VA; Department of Toxicology, Purdue University, West Lafayette, IN, USA
| | - Michael George Zaki Ghali
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
2
|
Chen X, Xu Z, Zeng S, Wang X, Liu W, Qian L, Wei J, Yang X, Shen Q, Gong Z, Yan Y. The Molecular Aspect of Antitumor Effects of Protease Inhibitor Nafamostat Mesylate and Its Role in Potential Clinical Applications. Front Oncol 2019; 9:852. [PMID: 31552177 PMCID: PMC6733886 DOI: 10.3389/fonc.2019.00852] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 02/05/2023] Open
Abstract
Nafamostat mesylate (NM), a synthetic serine protease inhibitor first placed on the market by Japan Tobacco in 1986, has been approved to treat inflammatory-related diseases, such as pancreatitis. Recently, an increasing number of studies have highlighted the promising effects of NM in inhibiting cancer progression. Alone or in combination treatments, studies have shown that NM attenuates various malignant tumors, including pancreatic, colorectal, gastric, gallbladder, and hepatocellular cancers. In this review, based on several activating pathways, including the canonical Nuclear factor-κB (NF-κB) signaling pathway, tumor necrosis factor receptor-1 (TNFR1) signaling pathway, and tumorigenesis-related tryptase secreted by mast cells, we summarize the anticancer properties of NM in existing studies both in vitro and in vivo. In addition, the efficacy and side effects of NM in cancer patients are summarized in detail. To further clarify NM's antitumor activities, clinical trials devoted to validating the clinical applications and underlying mechanisms are needed in the future.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wanli Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuying Shen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Han X, Wang N, Li J, Wang Y, Wang R, Chang J. Identification of nafamostat mesilate as an inhibitor of the fat mass and obesity-associated protein (FTO) demethylase activity. Chem Biol Interact 2019; 297:80-84. [DOI: 10.1016/j.cbi.2018.10.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/12/2018] [Accepted: 10/24/2018] [Indexed: 12/25/2022]
|
4
|
Haruki K, Shiba H, Shimada Y, Shirai Y, Iwase R, Fujiwara Y, Uwagawa T, Ohashi T, Yanaga K. Glycogen synthase kinase-3β activity plays a key role in the antitumor effect of nafamostat mesilate in pancreatic cancer cells. Ann Gastroenterol Surg 2017; 2:65-71. [PMID: 29863120 PMCID: PMC5868870 DOI: 10.1002/ags3.12025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer is often resistant to chemotherapy. We previously showed the efficacy of combination treatment using gemcitabine and nafamostat mesilate (FUT‐175) for patients with unresectable pancreatic cancer. However, the mechanisms that affect the sensitivity of FUT‐175 are not fully understood. The purpose of the present study was to clarify the mechanism of the sensitivity to FUT‐175, with a focus on the activity of glycogen synthase kinase‐3β (GSK‐3β). In vitro, we assessed sensitivity to FUT‐175 in human pancreatic cancer cell lines (PANC‐1 and MIAPaCa‐2) and difference of signaling in these cells by cell proliferation assay, Western blot analysis and microarray. Next, we assessed cell viability, apoptotic signal and nuclear factor‐kappa B (NF‐κB) activity in response to treatment with FUT‐175 alone and in combination with GSK‐3 inhibitor or protein phosphatase 2A (PP2A) by cell proliferation assay, Western blot analysis and enzyme‐linked immunosorbent assay. Phosphorylated GSK‐3β level was significantly higher in MIAPaCa‐2 (high sensitivity cell) than in PANC‐1 (low sensitivity cell). Cell viability and NF‐κB activity were significantly decreased by addition of GSK‐3 inhibitor to FUT‐175, and levels of cleaved caspase‐8 were increased by inhibition of GSK‐3. PP2A inhibitor increased the levels of phosphorylated GSK‐3β and sensitized both cell lines to FUT‐175 as measured by cell viability and apoptotic signal. The results indicate that GSK‐3β activity plays a key role in the antitumor effect of FUT‐175 in pancreatic cancer cells, and regulation of GSK‐3β by PP2A inhibition could be a novel therapeutic approach for pancreatic cancer.
Collapse
Affiliation(s)
- Koichiro Haruki
- Department of Surgery The Jikei University School of Medicine Tokyo Japan.,Division of Gene Therapy Research Center for Medical Science The Jikei University School of Medicine Tokyo Japan
| | - Hiroaki Shiba
- Department of Surgery The Jikei University School of Medicine Tokyo Japan
| | - Yohta Shimada
- Division of Gene Therapy Research Center for Medical Science The Jikei University School of Medicine Tokyo Japan
| | - Yoshihiro Shirai
- Department of Surgery The Jikei University School of Medicine Tokyo Japan.,Division of Gene Therapy Research Center for Medical Science The Jikei University School of Medicine Tokyo Japan
| | - Ryota Iwase
- Department of Surgery The Jikei University School of Medicine Tokyo Japan.,Division of Gene Therapy Research Center for Medical Science The Jikei University School of Medicine Tokyo Japan
| | - Yuki Fujiwara
- Department of Surgery The Jikei University School of Medicine Tokyo Japan
| | - Tadashi Uwagawa
- Department of Surgery The Jikei University School of Medicine Tokyo Japan
| | - Toya Ohashi
- Division of Gene Therapy Research Center for Medical Science The Jikei University School of Medicine Tokyo Japan
| | - Katsuhiko Yanaga
- Department of Surgery The Jikei University School of Medicine Tokyo Japan
| |
Collapse
|
5
|
Radical Resection of a Primarily Unresectable Pancreatic Cancer After Neoadjuvant Chemotherapy Using Gemcitabine, TS-1, and Nafamostat Mesilate; Report of a Case. Int Surg 2016; 100:287-91. [PMID: 25692432 DOI: 10.9738/intsurg-d-13-00193.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A 58-year-old male visited his primary physician for epigastric and back pain. Abdominal-enhanced computed tomography (CT) revealed a hypovascular pancreatic tumor measuring 17 × 11 mm in the uncinate process of the pancreas extending into the superior mesenteric plexus for greater than 180°. With a diagnosis of unresectable pancreatic cancer, the patient received gemcitabine and TS-1 with arterial infusion of nafamostat mesilate. After 3 courses of chemotherapy, enhanced CT revealed a decrease in size of the pancreatic tumor with no lymph node and distant metastasis and improved invasion of the superior mesenteric plexus down to 120°. The patient underwent R0 pancreaticoduodenectomy. The patient made a satisfactory recovery without complications and was discharged on postoperative day 10. We herein report the first curative resected case of a primarily unresectable pancreatic cancer after neoadjuvant chemotherapy using gemcitabine, TS-1, and nafamostat mesilate.
Collapse
|
6
|
Shirai Y, Shiba H, Iwase R, Haruki K, Fujiwara Y, Furukawa K, Uwagawa T, Ohashi T, Yanaga K. Dual inhibition of nuclear factor kappa-B and Mdm2 enhance the antitumor effect of radiation therapy for pancreatic cancer. Cancer Lett 2015; 370:177-84. [PMID: 26546875 DOI: 10.1016/j.canlet.2015.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Radiation therapy, alone or in combination with chemotherapy, is effective for patients with locally advanced and recurrent pancreatic cancer. Ionizing radiation induces cell cycle arrest and cell apoptosis through enhancement several signals such as p53, p21(Waf1/Cip1), and caspase. However, the therapeutic efficacy is attenuated by radiation-induced activation of NF-κB. Nafamostat mesilate, a synthetic serine protease inhibitor, inhibits NF-κB activation in pancreatic cancer. Therefore, we hypothesized that nafamostat mesilate inhibited radiation-induced activation of NF-κB and improves therapeutic outcome. RESULTS In combination group, NF-κB activation was significantly inhibited in comparison with that of radiation group. Nafamostat mesilate obviously down-regulated the expression levels of Mdm2 compared with control cells or irradiated cells. Consequently, p53 expression was stabilized inversely in correlation with Mdm2 protein expression level. The expression levels of p53, p21(Waf1/Cip1), cleaved caspase-3 and -8 were the highest in the combination group. Nafamostat mesilate enhanced ionizing radiation-induced cell apoptosis and G2/M cell cycle arrest. In combination group, cell proliferation and tumor growth were significantly slower than those in other groups. CONCLUSION Combination therapy of radiation with nafamostat mesilate exerts enhanced anti-tumor effect against human pancreatic cancer.
Collapse
Affiliation(s)
- Yoshihiro Shirai
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan; Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan.
| | - Hiroaki Shiba
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryota Iwase
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan; Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Koichiro Haruki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuki Fujiwara
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenei Furukawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Uwagawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Combination chemotherapy of nafamostat mesylate with gemcitabine for gallbladder cancer targeting nuclear factor-κB activation. J Surg Res 2013; 184:605-12. [DOI: 10.1016/j.jss.2013.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/21/2013] [Accepted: 06/04/2013] [Indexed: 01/30/2023]
|
8
|
Fujiwara Y, Shiba H, Iwase R, Haruki K, Furukawa K, Uwagawa T, Misawa T, Ohashi T, Yanaga K. Inhibition of Nuclear Factor Kappa-B Enhances the Antitumor Effect of Combination Treatment with Tumor Necrosis Factor-Alpha Gene Therapy and Gemcitabine for Pancreatic Cancer in Mice. J Am Coll Surg 2013; 216:320-32.e3. [DOI: 10.1016/j.jamcollsurg.2012.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/03/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
|
9
|
Combination chemotherapy of serine protease inhibitor nafamostat mesilate with oxaliplatin targeting NF-κB activation for pancreatic cancer. Cancer Lett 2013; 333:89-95. [PMID: 23348695 DOI: 10.1016/j.canlet.2013.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 12/14/2022]
Abstract
In this study, we assessed if nafamostat mesilate may enhance anti-tumor effects of oxaliplatin on Panc-1 cells and pancreatic cancer mouse model. In combination treatment with nafamostat mesilate and oxaliplatin, NF-κB activation was inhibited by suppressing IκBα phosphorylation, and caspase-8-mediated apoptosis was more prominent than that treated with oxaliplatin alone, both in vitro and in vivo. Nafamostat mesilate reduced proliferation rate of Panc-1 cells as compared with oxaliplatin alone in vitro and enhanced oxaliplatin-induced tumor growth inhibition in vivo. Combination chemotherapy using nafamostat mesilate and oxaliplatin induces synergistic cytotoxicity in pancreatic cancer and could be a novel strategy for treatment.
Collapse
|
10
|
Haruki K, Shiba H, Fujiwara Y, Furukawa K, Iwase R, Uwagawa T, Misawa T, Ohashi T, Yanaga K. Inhibition of nuclear factor-κB enhances the antitumor effect of paclitaxel against gastric cancer with peritoneal dissemination in mice. Dig Dis Sci 2013; 58:123-31. [PMID: 22806547 DOI: 10.1007/s10620-012-2311-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 07/02/2012] [Indexed: 12/26/2022]
Abstract
BACKGROUND Intraperitoneal (i.p.) administration of paclitaxel is useful for treating malignant tumors with peritoneal dissemination, but the therapeutic efficacy is limited. Chemoresistance due to paclitaxel-induced nuclear factor-kappa B (NF-κB) activation is an important cause of suboptimal therapeutic efficacy. AIMS The purpose of this study was to prove that addition of nafamostat mesilate (FUT-175), a synthetic serine protease inhibitor and an NF-κB inhibitor, to i.p. paclitaxel enhances antitumor effects of paclitaxel against gastric cancer with peritoneal dissemination. METHODS In vitro, we assessed NF-κB activity and apoptosis in response to treatment with FUT-175 alone, paclitaxel alone, or a combination of FUT-175 and paclitaxel in a human gastric cancer cell line (MKN-45). In vivo, we established peritoneal dissemination in nude mice by i.p. injection of MKN-45 cells. The animals received i.p. injections of FUT-175 alone three times a week (FUT-175 group), of paclitaxel alone once a week (paclitaxel group), or a combination of FUT-175 and paclitaxel (combination group) three times and once a week, respectively. RESULTS In the combination group, paclitaxel-induced NF-κB activation was inhibited and apoptosis was enhanced in comparison with those in the other groups both in vitro and in vivo. In the combination group, number and weight of peritoneal nodules were significantly lower than those in the paclitaxel group (p = 0.0009 and p = 0.0417, respectively). In the survival analysis, the combination group had a significantly better survival than the paclitaxel group (p = 0.0048). CONCLUSION FUT-175 enhances the antitumor effect of i.p. paclitaxel against gastric cancer with peritoneal dissemination by inhibiting NF-κB activation in mice.
Collapse
Affiliation(s)
- Koichiro Haruki
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
You N, Liu W, Wang T, Ji R, Wang X, Gong Z, Dou K, Tao K. Swainsonine inhibits growth and potentiates the cytotoxic effect of paclitaxel in hepatocellular carcinoma in vitro and in vivo. Oncol Rep 2012; 28:2091-2100. [PMID: 22993037 DOI: 10.3892/or.2012.2035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/23/2012] [Indexed: 11/06/2022] Open
Abstract
Swainsonine, an extract from Astragalus membranaceus, exhibits broad inhibition of growth and pro-apoptotic activity in a number of tumor types. However, the underlying mechanism involved remains unclear. To investigate the effects and mechanisms of swainsonine on hepatocellular carcinoma (HCC), we performed experiments on HepG2, SMCC7721, Huh7 and MHCC97-H human hepatoma and HL-7702 human hepatocyte cells. We observed that swainsonine significantly inhibited the viability of human hepatoma cells in a dose- and time-dependent manner, but did not affect human hepatocytes. Due to their highly proliferative and tumorigenic nature, we selected MHCC97-H cells as a model system to examine. Swainsonine significantly inhibited MHCC97-H cell growth by causing cell cycle arrest at the G0/G1 phase and the induction of apoptosis. Blockage of G0/G1 phase was accompanied by a decrease in cyclins (D1 and E) and cyclin-dependent kinases (Cdk2 and Cdk4) and an increase in the Cdk inhibitors p21 and p27. Furthermore, swainsonine enhanced the apoptosis of MHCC97-H cells with the induction of the upregulation of Bax and the downregulation of Bcl-2, whereas the expressionof Fas and Fas-L remained almost unchanged. These changes were accompanied by the enhanced cytoplasmic accumulation of nuclear factor κB (NF-κB) with a concomitant decrease in the nuclear fraction. Importantly, swainsonine also potentiated the cytotoxic effects of paclitaxel in vitro and in vivo, in part, by restricting the paclitaxel-induced nuclear accumulation of NF-κB. Taken together, these results suggest that swainsonine may be an important agent against HCC via directly inhibiting HCC cell growth and enhancing the responsiveness of HCC cells to paclitaxel.
Collapse
Affiliation(s)
- Nan You
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | | | | | | | | | | | | | | |
Collapse
|