1
|
Papadopoulos N, Hruban RH. Molecular Mechanisms of Cystic Neoplasia‐. THE PANCREAS 2023:630-637. [DOI: 10.1002/9781119876007.ch82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Sun L, Huang H, Jin Z. Application of EUS-based techniques in the evaluation of pancreatic cystic neoplasms. Endosc Ultrasound 2021; 10:230-240. [PMID: 34213426 PMCID: PMC8411565 DOI: 10.4103/eus-d-20-00216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/21/2021] [Indexed: 12/04/2022] Open
Abstract
Pancreatic cystic neoplasms (PCNs) are being detected increasingly frequently due to the widespread use of high-resolution abdominal imaging modalities. Some subtypes of PCNs have the potential for malignant transformation. Therefore, accurate diagnosis of PCNs is crucial to determine whether surgical resection or surveillance is the best management strategy. However, the current cross-section imaging modalities are not accurate enough to enable definite diagnoses. In the last decade, EUS-based techniques have emerged, aiming to overcome the limitations of standard cross-section imaging modalities. These novel EUS-based techniques were primarily designed to acquire distinct images to make radiological diagnoses, collect cyst fluid to undergo biochemical or molecular analyses, and obtain tissue to conclude the pathological diagnoses. In this article, we present a comprehensive and critical review of these emerging EUS techniques for the diagnosis of PCNs, with emphasis being placed on the advantages, feasibilities, diagnostic performances, and limitations of these novel techniques.
Collapse
Affiliation(s)
- Liqi Sun
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhendong Jin
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
3
|
Carmicheal J, Patel A, Dalal V, Atri P, Dhaliwal AS, Wittel UA, Malafa MP, Talmon G, Swanson BJ, Singh S, Jain M, Kaur S, Batra SK. Elevating pancreatic cystic lesion stratification: Current and future pancreatic cancer biomarker(s). Biochim Biophys Acta Rev Cancer 2019; 1873:188318. [PMID: 31676330 DOI: 10.1016/j.bbcan.2019.188318] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an incredibly deadly disease with a 5-year survival rate of 9%. The presence of pancreatic cystic lesions (PCLs) confers an increased likelihood of future pancreatic cancer in patients placing them in a high-risk category. Discerning concurrent malignancy and risk of future PCL progression to cancer must be carefully and accurately determined to improve survival outcomes and avoid unnecessary morbidity of pancreatic resection. Unfortunately, current image-based guidelines are inadequate to distinguish benign from malignant lesions. There continues to be a need for accurate molecular and imaging biomarker(s) capable of identifying malignant PCLs and predicting the malignant potential of PCLs to enable risk stratification and effective intervention management. This review provides an update on the current status of biomarkers from pancreatic cystic fluid, pancreatic juice, and seromic molecular analyses and discusses the potential of radiomics for differentiating PCLs harboring cancer from those that do not.
Collapse
Affiliation(s)
- Joseph Carmicheal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Asish Patel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vipin Dalal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amaninder S Dhaliwal
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Uwe A Wittel
- Department of General- and Visceral Surgery, University of Freiburg Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Mokenge P Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Geoffrey Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin J Swanson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shailender Singh
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
4
|
Unger K, Mehta KY, Kaur P, Wang Y, Menon SS, Jain SK, Moonjelly RA, Suman S, Datta K, Singh R, Fogel P, Cheema AK. Metabolomics based predictive classifier for early detection of pancreatic ductal adenocarcinoma. Oncotarget 2018; 9:23078-23090. [PMID: 29796173 PMCID: PMC5955422 DOI: 10.18632/oncotarget.25212] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
The availability of robust classification algorithms for the identification of high risk individuals with resectable disease is critical to improving early detection strategies and ultimately increasing survival rates in PC. We leveraged high quality biospecimens with extensive clinical annotations from patients that received treatment at the Medstar-Georgetown University hospital. We used a high resolution mass spectrometry based global tissue profiling approach in conjunction with multivariate analysis for developing a classification algorithm that would predict early stage PC with high accuracy. The candidate biomarkers were annotated using tandem mass spectrometry. We delineated a six metabolite panel that could discriminate early stage PDAC from benign pancreatic disease with >95% accuracy of classification (Specificity = 0.85, Sensitivity = 0.9). Subsequently, we used multiple reaction monitoring mass spectrometry for evaluation of this panel in plasma samples obtained from the same patients. The pattern of expression of these metabolites in plasma was found to be discordant as compared to that in tissue. Taken together, our results show the value of using a metabolomics approach for developing highly predictive panels for classification of early stage PDAC. Future investigations will likely lead to the development of validated biomarker panels with potential for clinical translation in conjunction with CA-19-9 and/or other biomarkers.
Collapse
Affiliation(s)
- Keith Unger
- MedStar Georgetown University Hospital, Washington, DC, United States of America
| | - Khyati Y Mehta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Prabhjit Kaur
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yiwen Wang
- Department of Biostatistics and Biomathematics, Georgetown University Medical Center, Washington, DC, United States of America
| | - Smrithi S Menon
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Shreyans K Jain
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Rose A Moonjelly
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Shubhankar Suman
- Departments of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Kamal Datta
- Departments of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Rajbir Singh
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Paul Fogel
- Unité MéDIAN, UMR CNRS 6237 MEDYC, Université de Reims, Reims, France
| | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America.,Departments of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
5
|
Fania C, Pezzilli R, Melzi d'Eril G, Gelfi C, Barassi A. Identification of Small Proteins and Peptides in the Differentiation of Patients with Intraductal Mucinous Neoplasms of the Pancreas, Chronic Pancreatitis and Pancreatic Adenocarcinoma. Dig Dis Sci 2018; 63:920-933. [PMID: 29417328 DOI: 10.1007/s10620-018-4944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 01/20/2018] [Indexed: 12/09/2022]
Abstract
BACKGROUND There are a limited number of studies investigating the type of serum proteins capable of differentiating intraductal papillary mucinous neoplasms from benign or malignant diseases of the pancreas. AIMS To select proteins able to differentiate intraductal papillary mucinous neoplasms from benign and malignant pancreatic disease using semiquantitative proteomics. METHODS Serum samples were obtained from 74 patients (19 with type II intraductal papillary mucinous neoplasms, 8 with type I/III intraductal papillary mucinous neoplasms, 24 with chronic pancreatitis, 23 with pancreatic ductal adenocarcinomas) and 21 healthy subjects. Small proteins and peptides were assayed by matrix-assisted laser desorption/ionization for the detection of differentially abundant species possibly related to tumor onset. Serum pancreatic amylase, lipase, carcinoembryonic antigen and carbohydrate antigen 19-9 (CA 19-9) were also assayed. RESULTS Twenty-six of 84 peaks detected were dysregulated (7 more abundant and 19 less abundant in the type II intraductal papillary mucinous neoplasms, p < 0.05). Of the differentially abundant peaks, 17 were commonly dysregulated (3 peaks more abundant and 13 less abundant in type II intraductal papillary mucinous neoplasms, and one at m/z = 9961 at variance), indicating a protein fingerprint shared by types I/III and type II intraductal papillary mucinous neoplasms and pancreatic ductal adenocarcinomas. CONCLUSIONS These results suggest that our approach can be used to differentiate type II intraductal papillary mucinous neoplasms from type I/III neoplasms, and type II intraductal papillary mucinous neoplasms from pancreatic ductal adenocarcinomas.
Collapse
Affiliation(s)
- Chiara Fania
- Clinical Proteomics Unit, IRCCS Policlinico San Donato, San Donato Milanese, MI, Italy
| | - Raffaele Pezzilli
- Pancreas Unit, Department of Digestive System, Sant'Orsola-Malpighi Hospital, Via Massarenti, 9, 40138, Bologna, Italy.
| | - Gianvico Melzi d'Eril
- Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Alessandra Barassi
- Department of Health Sciences, San Paolo Hospital, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Girotra M, Park WG. Endoscopic ultrasound guided fine-needle aspiration and biopsy of pancreatic cysts. TECHNIQUES IN GASTROINTESTINAL ENDOSCOPY 2018; 20:39-45. [DOI: 10.1016/j.tgie.2017.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
|
7
|
Jabbar KS, Arike L, Verbeke CS, Sadik R, Hansson GC. Highly Accurate Identification of Cystic Precursor Lesions of Pancreatic Cancer Through Targeted Mass Spectrometry: A Phase IIc Diagnostic Study. J Clin Oncol 2017; 36:367-375. [PMID: 29166170 DOI: 10.1200/jco.2017.73.7288] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Pancreatic cystic lesions are common incidental findings on imaging, but up to half may be forerunners of pancreatic cancer. Therefore, accurate differential diagnosis is crucial for correct patient management. Unfortunately, currently available diagnostic methods cannot robustly identify premalignant and malignant pancreatic cystic lesions. Methods Cyst fluid samples obtained by routine endoscopic ultrasound-guided aspiration were used for the analyses. In a cohort of 24 patients, eight biomarker candidates for malignant potential and high-grade dysplasia/cancer were identified by an explorative proteomic approach. Subsequently, a quantitative analysis, using 30 heavy-labeled peptides from the biomarkers and parallel reaction monitoring mass spectrometry, was devised, tested in a training cohort of 80, and prospectively evaluated in a validation cohort of 68 patients. End points were surgical pathology diagnosis/clinical follow-up. Diagnostic assessments were blinded to mass spectrometry results. Results The optimal set of markers for detecting malignant potential was a panel of peptides from mucin-5AC and mucin-2, which could discriminate premalignant/malignant lesions from benign with an accuracy of 97% (95% CI, 89% to 99%) in the validation cohort. This result compared favorably with the accuracy of standard analyses: cyst fluid carcinoembryonic antigen (61%; 95% CI, 46% to 74%; P < .001) and cytology (84%; 95% CI, 71% to 92%; P = .02). A combination of proteins mucin-5AC and prostate stem-cell antigen could identify high-grade dysplasia/cancer with an accuracy of 96% (95% CI, 90% to 99%), and detected 95% of malignant/severely dysplastic lesions, compared with 35% and 50% for carcinoembryonic antigen and cytology ( P < .001 and P = .003, respectively). Conclusion Targeted mass spectrometry analysis of just three cyst fluid biomarkers provides highly accurate identification and assessment of cystic precursors to pancreatic adenocarcinoma. Additional studies should determine whether the method can facilitate timely cancer diagnosis, successful intervention, and prevention.
Collapse
Affiliation(s)
- Karolina S Jabbar
- Karolina S. Jabbar, Liisa Arike, and Gunnar C. Hansson, University of Gothenburg; Karolina S. Jabbar and Riadh Sadik, Sahlgrenska University Hospital, Gothenburg, Sweden; and Caroline S. Verbeke, University of Oslo, Oslo, Norway
| | - Liisa Arike
- Karolina S. Jabbar, Liisa Arike, and Gunnar C. Hansson, University of Gothenburg; Karolina S. Jabbar and Riadh Sadik, Sahlgrenska University Hospital, Gothenburg, Sweden; and Caroline S. Verbeke, University of Oslo, Oslo, Norway
| | - Caroline S Verbeke
- Karolina S. Jabbar, Liisa Arike, and Gunnar C. Hansson, University of Gothenburg; Karolina S. Jabbar and Riadh Sadik, Sahlgrenska University Hospital, Gothenburg, Sweden; and Caroline S. Verbeke, University of Oslo, Oslo, Norway
| | - Riadh Sadik
- Karolina S. Jabbar, Liisa Arike, and Gunnar C. Hansson, University of Gothenburg; Karolina S. Jabbar and Riadh Sadik, Sahlgrenska University Hospital, Gothenburg, Sweden; and Caroline S. Verbeke, University of Oslo, Oslo, Norway
| | - Gunnar C Hansson
- Karolina S. Jabbar, Liisa Arike, and Gunnar C. Hansson, University of Gothenburg; Karolina S. Jabbar and Riadh Sadik, Sahlgrenska University Hospital, Gothenburg, Sweden; and Caroline S. Verbeke, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Mehta KY, Wu HJ, Menon SS, Fallah Y, Zhong X, Rizk N, Unger K, Mapstone M, Fiandaca MS, Federoff HJ, Cheema AK. Metabolomic biomarkers of pancreatic cancer: a meta-analysis study. Oncotarget 2017; 8:68899-68915. [PMID: 28978166 PMCID: PMC5620306 DOI: 10.18632/oncotarget.20324] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive disease with high mortality rates, however, there is no blood test for early detection and diagnosis of this disease. Several research groups have reported on metabolomics based clinical investigations to identify biomarkers of PC, however there is a lack of a centralized metabolite biomarker repository that can be used for meta-analysis and biomarker validation. Furthermore, since the incidence of PC is associated with metabolic syndrome and Type 2 diabetes mellitus (T2DM), there is a need to uncouple these common metabolic dysregulations that may otherwise diminish the clinical utility of metabolomic biosignatures. Here, we attempted to externally replicate proposed metabolite biomarkers of PC reported by several other groups in an independent group of PC subjects. Our study design included a T2DM cohort that was used as a non-cancer control and a separate cohort diagnosed with colorectal cancer (CRC), as a cancer disease control to eliminate possible generic biomarkers of cancer. We used targeted mass spectrometry for quantitation of literature-curated metabolite markers and identified a biomarker panel that discriminates between normal controls (NC) and PC patients with high accuracy. Further evaluation of our model with CRC, however, showed a drop in specificity for the PC biomarker panel. Taken together, our study underscores the need for a more robust study design for cancer biomarker studies so as to maximize the translational value and clinical implementation.
Collapse
Affiliation(s)
- Khyati Y Mehta
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Hung-Jen Wu
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Smrithi S Menon
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yassi Fallah
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Xiaogang Zhong
- Department of Biostatistics Bioinformatics and Biomathematics, Georgetown University, Washington, DC, United States of America
| | - Nasser Rizk
- Department of Health Sciences, Qatar University, Doha, Qatar
| | - Keith Unger
- Lombardi Comprehensive Cancer Center, Med-Star Georgetown University Hospital, Washington, DC, United States of America
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, CA, United States of America
| | - Massimo S Fiandaca
- Department of Neurology, University of California, Irvine, CA, United States of America.,Department of Neurological Surgery, University of California, Irvine, CA, United States of America
| | - Howard J Federoff
- Department of Neurology, University of California, Irvine, CA, United States of America
| | - Amrita K Cheema
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
9
|
Sharib J, Kirkwood K. Early and accurate diagnosis of pancreatic cancer? Oncotarget 2016; 7:85676-85677. [PMID: 27829239 PMCID: PMC5349864 DOI: 10.18632/oncotarget.13142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/03/2016] [Indexed: 11/29/2022] Open
|
10
|
Systematic Review of Pancreatic Cyst Fluid Biomarkers: The Path Forward. Clin Transl Gastroenterol 2015; 6:e88. [PMID: 26065716 PMCID: PMC4816245 DOI: 10.1038/ctg.2015.17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/04/2015] [Indexed: 12/11/2022] Open
Abstract
There is significant research interest in developing and validating novel pancreatic cyst-fluid biomarkers given the increasing recognition of the prevalence of pancreatic cysts and their associated malignant potential. Although current international consensus guidelines are helpful, they fail to diagnose with certainty the cyst type and the level of epithelial dysplasia. They also fall short in predicting the future likelihood of malignant transformation. A systematic review was performed with the objective of summarizing cyst-fluid-based biomarkers that have been published in the medical literature over the past 10 years and characterizing the current quality of evidence. Our review demonstrates that there is an increasing interest in this topic with several different and innovative approaches including DNA, RNA, proteomic, and metabolomics profiling. Further techniques to improve upon cytological yield have also been studied. Besides identifying potentially useful clinical biomarkers, these empiric approaches have provided further insight into their pathogenesis. The level of evidence for the vast majority of these studies, however, is limited to retrospective early validation studies. The path forward will be to select out the most promising biomarkers and develop multicenter consortiums capable of capturing adequate sample sizes with appropriate study designs.
Collapse
|
11
|
|
12
|
Freeny PC, Saunders MD. Moving beyond morphology: new insights into the characterization and management of cystic pancreatic lesions. Radiology 2014; 272:345-63. [PMID: 25058133 DOI: 10.1148/radiol.14131126] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The frequency of detection of cystic pancreatic lesions with cross-sectional imaging, particularly with multidetector computed tomography, magnetic resonance (MR) imaging, and MR cholangiopancreatography, is increasing, and many of these cystic pancreatic lesions are being detected incidentally in asymptomatic patients. Because there is considerable overlap in the cross-sectional imaging findings of cystic pancreatic lesions, and because many of these lesions being detected are smaller than 3 cm in diameter and lack any specific cross-sectional imaging features, it has become difficult to make informed decisions about patient management when the precise diagnosis remains uncertain. This article presents the limitations of cross-sectional imaging in patients with cystic pancreatic lesions, details advances in knowledge of the genomic and epigenomic changes that lead to progression of carcinogenesis, outlines the current understanding of the natural history of mucinous cystic lesions, and includes the current use and future potential of novel tumor markers and molecular analysis to characterize cystic pancreatic lesions more precisely. The need to move beyond cross-sectional imaging morphology and toward the use of new techniques to diagnose these lesions accurately is emphasized. An algorithm that uses these techniques is proposed and will hopefully lead to improved patient management.
Collapse
Affiliation(s)
- Patrick C Freeny
- From the Department of Radiology (P.C.F.) and Department of Medicine, Division of Gastroenterology (M.D.S.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195
| | | |
Collapse
|
13
|
Jabbar KS, Verbeke C, Hyltander AG, Sjövall H, Hansson GC, Sadik R. Proteomic mucin profiling for the identification of cystic precursors of pancreatic cancer. J Natl Cancer Inst 2014; 106:djt439. [PMID: 24523528 PMCID: PMC3952201 DOI: 10.1093/jnci/djt439] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Pancreatic cystic lesions (PCLs) are increasingly frequent radiological incidentalomas, with a considerable proportion representing precursors of pancreatic cancer. Better diagnostic tools are required for patients to benefit from this development. METHODS To evaluate whether cyst fluid mucin expression could predict malignant potential and/or transformation in PCLs, a proteomic method was devised and prospectively evaluated in consecutive patients referred to our tertiary center for endoscopic ultrasound-guided aspiration of cystic lesions from May 2007 through November 2008 (discovery cohort) and from December 2008 through October 2012 (validation cohort). Cytology and cyst fluid carcinoembryonic antigen (CEA; premalignancy > 192 ng/mL, malignancy > 1000 ng/mL) were routinely analyzed, and samples were further processed as follows: one-dimensional gel electrophoresis, excision of high-mass areas, tryptic digestion and nano-liquid chromatography-tandem mass spectrometry, with peptide identification by Mascot software and an in-house mucin database. All diagnostic evaluations were blinded to proteomics results. Histology was required to confirm the presence/absence of malignant transformation. All statistical tests were two-sided. RESULTS Proteomic mucin profiling proved statistically significantly more accurate (97.5%; 95% confidence interval [CI] = 90.3% to 99.6%) than cytology (71.4%; 95% CI = 59.8% to 80.9%; P < .001) and cyst fluid CEA (78.0%; 95% CI = 65.0% to 87.3%; P < .001) in identifying the 37 (out of 79; 46.8%) lesions with malignant potential (ie, premalignant or malignant tumors). The accuracy of proteomics was nearly identical (96.6% vs 98.0%) between the discovery (n = 29) and validation (n = 50) cohorts. Furthermore, mucin profiling predicted malignant transformation, present in 16 out of 29 (discovery cohort: 9, validation cohort: 20) lesions with available histology, with 89.7% accuracy (95% CI = 71.5% to 97.3%) (for the validation cohort only: 95.0%; 95% CI = 73.1% to 99.7%). This markedly exceeded corresponding results for cytology (51.7%; 95% CI = 32.9% to 70.1%; P = .003) and CEA (57.1%; 95% CI = 34.4% to 77.4%; P = .02). CONCLUSIONS Proteomic cyst fluid mucin profiling robustly discriminates benign, premalignant, and malignant PCLs. Consequently, it may improve pancreatic cancer prevention and reduce the morbidity burden of unwarranted pancreatic surgery.
Collapse
Affiliation(s)
- Karolina S Jabbar
- Affiliations of authors: Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden (KSJ, GCH); Department of Gastroenterology and Hepatology (KSJ, HS, RS) and Department of Surgery (AGH), Sahlgrenska University Hospital, Gothenburg, Sweden; Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden (CV)
| | | | | | | | | | | |
Collapse
|
14
|
Rebours V, Le Faouder J, Laouirem S, Mebarki M, Albuquerque M, Camadro JM, Léger T, Ruszniewski P, Lévy P, Paradis V, Bedossa P, Couvelard A. In situ proteomic analysis by MALDI imaging identifies ubiquitin and thymosin-β4 as markers of malignant intraductal pancreatic mucinous neoplasms. Pancreatology 2013; 14:117-24. [PMID: 24650966 DOI: 10.1016/j.pan.2013.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 02/06/2023]
Abstract
PURPOSE Intraductal pancreatic mucinous neoplasms (IPMN) are precancerous cystic lesions. The aim was to investigate the in situ IPMN proteome using MALDI (Matrix-Assisted Laser Desorption/Ionisation) imaging and to characterize biomarkers associated with the grade of dysplasia. EXPERIMENTAL DESIGN Frozen human Branch duct -IPMN sections were selected according to dysplasia and proteomic analyses were performed by MALDI imaging to obtain mass spectra distribution. The most discriminating peaks were identified using tissue extraction and nanoLC-ESI-MS/MS. Identified peaks were validated in independent series of IPMN by immunochemistry on surgical specimens (tissue-microarrays (TMA), n = 45) and endoscopic ultrasound fine-needle aspiration (EUS FNA) samples (n = 25). RESULTS BD-IPMN samples with low (n = 10) and high (n = 10) grades of dysplasia were analyzed. Differential spectra of proteins were found in the two groups with significantly different intensities (n = 15). The two peaks (intense in high grade IPMN) (m/z 8565 and 4747) were characterized as the monomeric ubiquitin (Mascot score = 319.22) and an acetylated fragment of thymosin-β4 (2-42) (Omssa score = 1.37 E-9). Validation on TMA and EUS FNA samples confirmed that ubiquitin was overexpressed in high grade dysplasia (p = 0.04 and p = 0.0004). Thymosin-β4 expression was confirmed on TMA by immunohistochemistry on high grade IPMN (p = 0.011). CONCLUSION Ubiquitin and thymosin-β4 are overexpressed in IPMN with high grade dysplasia. Positive immunochemical staining on EUS-FNA material is a major argument in support of preventive resection.
Collapse
Affiliation(s)
- Vinciane Rebours
- Pancreatology Department, Beaujon Hospital, AP-HP, Clichy, Paris-Diderot University, France; Inserm U773-CRB3, Paris-Diderot University, Paris, France.
| | | | | | - Mounya Mebarki
- Inserm U773-CRB3, Paris-Diderot University, Paris, France
| | - Miguel Albuquerque
- Inserm U773-CRB3, Paris-Diderot University, Paris, France; Pathology Department, Beaujon Hospital, AP-HP, Clichy, Paris-Diderot University, France
| | - Jean-Michel Camadro
- Mass Spectrometry Facility, Jacques Monod Institute, UMR7592, Paris-Diderot University - CNRS, Paris, France; Molecular and Cellular Pathology Program, Jacques Monod Institute, UMR7592, Paris-Diderot University - CNRS, Paris, France
| | - Thibaut Léger
- Mass Spectrometry Facility, Jacques Monod Institute, UMR7592, Paris-Diderot University - CNRS, Paris, France
| | - Philippe Ruszniewski
- Pancreatology Department, Beaujon Hospital, AP-HP, Clichy, Paris-Diderot University, France; Inserm U773-CRB3, Paris-Diderot University, Paris, France
| | - Philippe Lévy
- Pancreatology Department, Beaujon Hospital, AP-HP, Clichy, Paris-Diderot University, France
| | - Valérie Paradis
- Inserm U773-CRB3, Paris-Diderot University, Paris, France; Pathology Department, Beaujon Hospital, AP-HP, Clichy, Paris-Diderot University, France
| | - Pierre Bedossa
- Inserm U773-CRB3, Paris-Diderot University, Paris, France; Pathology Department, Beaujon Hospital, AP-HP, Clichy, Paris-Diderot University, France
| | - Anne Couvelard
- Inserm U773-CRB3, Paris-Diderot University, Paris, France; Pathology Department, Bichat Hospital, AP-HP, Paris-Diderot University, France
| |
Collapse
|