1
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
2
|
Napolitano T, Avolio F, Silvano S, Forcisi S, Pfeifer A, Vieira A, Navarro-Sanz S, Friano ME, Ayachi C, Garrido-Utrilla A, Atlija J, Hadzic B, Becam J, Sousa-De-Veiga A, Plaisant MD, Balaji S, Pisani DF, Mondin M, Schmitt-Kopplin P, Amri EZ, Collombat P. Gfi1 Loss Protects against Two Models of Induced Diabetes. Cells 2021; 10:cells10112805. [PMID: 34831029 PMCID: PMC8616283 DOI: 10.3390/cells10112805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Although several approaches have revealed much about individual factors that regulate pancreatic development, we have yet to fully understand their complicated interplay during pancreas morphogenesis. Gfi1 is transcription factor specifically expressed in pancreatic acinar cells, whose role in pancreas cells fate identity and specification is still elusive. Methods: In order to gain further insight into the function of this factor in the pancreas, we generated animals deficient for Gfi1 specifically in the pancreas. Gfi1 conditional knockout animals were phenotypically characterized by immunohistochemistry, RT-qPCR, and RNA scope. To assess the role of Gfi1 in the pathogenesis of diabetes, we challenged Gfi1-deficient mice with two models of induced hyperglycemia: long-term high-fat/high-sugar feeding and streptozotocin injections. Results: Interestingly, mutant mice did not show any obvious deleterious phenotype. However, in depth analyses demonstrated a significant decrease in pancreatic amylase expression, leading to a diminution in intestinal carbohydrates processing and thus glucose absorption. In fact, Gfi1-deficient mice were found resistant to diet-induced hyperglycemia, appearing normoglycemic even after long-term high-fat/high-sugar diet. Another feature observed in mutant acinar cells was the misexpression of ghrelin, a hormone previously suggested to exhibit anti-apoptotic effects on β-cells in vitro. Impressively, Gfi1 mutant mice were found to be resistant to the cytotoxic and diabetogenic effects of high-dose streptozotocin administrations, displaying a negligible loss of β-cells and an imperturbable normoglycemia. Conclusions: Together, these results demonstrate that Gfi1 could turn to be extremely valuable for the development of new therapies and could thus open new research avenues in the context of diabetes research.
Collapse
Affiliation(s)
- Tiziana Napolitano
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Fabio Avolio
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark;
| | - Serena Silvano
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Sara Forcisi
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environment Health, 85764 Neuherberg, Germany; (S.F.); (P.S.-K.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Anja Pfeifer
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Andhira Vieira
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | | | - Marika Elsa Friano
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Chaïma Ayachi
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Anna Garrido-Utrilla
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | | | - Biljana Hadzic
- Pediatric Oncology & Hematology Department, Centre Hospitalier Universitaire de Nice, Hopital Archet 2, 06202 Nice, France;
| | - Jérôme Becam
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Anette Sousa-De-Veiga
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Magali Dodille Plaisant
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | | | - Didier F. Pisani
- Medicine Faculty, Université Côte d’Azur, CNRS, LP2M, 06003 Nice, France;
| | - Magali Mondin
- Pôle Imagerie Photonique, Bordeaux Imaging Center, Université de Bordeaux, UMS 3420 CNRS-US4 Inserm, 33076 Bordeaux, France;
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environment Health, 85764 Neuherberg, Germany; (S.F.); (P.S.-K.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ez-Zoubir Amri
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
| | - Patrick Collombat
- Faculté des Sciences, Université Côte d’Azur, CNRS, Inserm, iBV, Parc Valrose, 06108 Nice, France; (T.N.); (S.S.); (A.P.); (A.V.); (M.E.F.); (C.A.); (A.G.-U.); (J.B.); (A.S.-D.-V.); (M.D.P.); (E.-Z.A.)
- Correspondence:
| |
Collapse
|
3
|
Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020; 10:E697. [PMID: 32365821 PMCID: PMC7277093 DOI: 10.3390/biom10050697] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Fiona Augsburger
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| |
Collapse
|
4
|
Transcriptional Maintenance of Pancreatic Acinar Identity, Differentiation, and Homeostasis by PTF1A. Mol Cell Biol 2016; 36:3033-3047. [PMID: 27697859 DOI: 10.1128/mcb.00358-16] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022] Open
Abstract
Maintenance of cell type identity is crucial for health, yet little is known of the regulation that sustains the long-term stability of differentiated phenotypes. To investigate the roles that key transcriptional regulators play in adult differentiated cells, we examined the effects of depletion of the developmental master regulator PTF1A on the specialized phenotype of the adult pancreatic acinar cell in vivo Transcriptome sequencing and chromatin immunoprecipitation sequencing results showed that PTF1A maintains the expression of genes for all cellular processes dedicated to the production of the secretory digestive enzymes, a highly attuned surveillance of unfolded proteins, and a heightened unfolded protein response (UPR). Control by PTF1A is direct on target genes and indirect through a ten-member transcription factor network. Depletion of PTF1A causes an imbalance that overwhelms the UPR, induces cellular injury, and provokes acinar metaplasia. Compromised cellular identity occurs by derepression of characteristic stomach genes, some of which are also associated with pancreatic ductal cells. The loss of acinar cell homeostasis, differentiation, and identity is directly relevant to the pathologies of pancreatitis and pancreatic adenocarcinoma.
Collapse
|
5
|
Vehlow C, Kao DP, Bristow MR, Hunter LE, Weiskopf D, Görg C. Visual analysis of biological data-knowledge networks. BMC Bioinformatics 2015; 16:135. [PMID: 25925016 PMCID: PMC4456720 DOI: 10.1186/s12859-015-0550-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The interpretation of the results from genome-scale experiments is a challenging and important problem in contemporary biomedical research. Biological networks that integrate experimental results with existing knowledge from biomedical databases and published literature can provide a rich resource and powerful basis for hypothesizing about mechanistic explanations for observed gene-phenotype relationships. However, the size and density of such networks often impede their efficient exploration and understanding. RESULTS We introduce a visual analytics approach that integrates interactive filtering of dense networks based on degree-of-interest functions with attribute-based layouts of the resulting subnetworks. The comparison of multiple subnetworks representing different analysis facets is facilitated through an interactive super-network that integrates brushing-and-linking techniques for highlighting components across networks. An implementation is freely available as a Cytoscape app. CONCLUSIONS We demonstrate the utility of our approach through two case studies using a dataset that combines clinical data with high-throughput data for studying the effect of β-blocker treatment on heart failure patients. Furthermore, we discuss our team-based iterative design and development process as well as the limitations and generalizability of our approach.
Collapse
Affiliation(s)
- Corinna Vehlow
- VISUS, University of Stuttgart, Allmandring 19, Stuttgart, Germany.
| | - David P Kao
- School of Medicine, University of Colorado, E 17th Pl, Aurora, CO, USA.
| | - Michael R Bristow
- School of Medicine, University of Colorado, E 17th Pl, Aurora, CO, USA.
| | - Lawrence E Hunter
- School of Medicine, University of Colorado, E 17th Pl, Aurora, CO, USA.
| | - Daniel Weiskopf
- VISUS, University of Stuttgart, Allmandring 19, Stuttgart, Germany.
| | - Carsten Görg
- School of Medicine, University of Colorado, E 17th Pl, Aurora, CO, USA.
| |
Collapse
|
7
|
Novel pancreatic endocrine maturation pathways identified by genomic profiling and causal reasoning. PLoS One 2013; 8:e56024. [PMID: 23418498 PMCID: PMC3572136 DOI: 10.1371/journal.pone.0056024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/04/2013] [Indexed: 12/18/2022] Open
Abstract
We have used a previously unavailable model of pancreatic development, derived in vitro from human embryonic stem cells, to capture a time-course of gene, miRNA and histone modification levels in pancreatic endocrine cells. We investigated whether it is possible to better understand, and hence control, the biological pathways leading to pancreatic endocrine formation by analysing this information and combining it with the available scientific literature to generate models using a casual reasoning approach. We show that the embryonic stem cell differentiation protocol is highly reproducible in producing endocrine precursor cells and generates cells that recapitulate many aspects of human embryonic pancreas development, including maturation into functional endocrine cells when transplanted into recipient animals. The availability of whole genome gene and miRNA expression data from the early stages of human pancreatic development will be of great benefit to those in the fields of developmental biology and diabetes research. Our causal reasoning algorithm suggested the involvement of novel gene networks, such as NEUROG3/E2F1/KDM5B and SOCS3/STAT3/IL-6, in endocrine cell development We experimentally investigated the role of the top-ranked prediction by showing that addition of exogenous IL-6 could affect the expression of the endocrine progenitor genes NEUROG3 and NKX2.2.
Collapse
|