1
|
Fukamachi K, Hagiwara Y, Futakuchi M, Alexander DB, Tsuda H, Suzui M. Evaluation of a biomarker for the diagnosis of pancreas cancer using an animal model. J Toxicol Pathol 2019; 32:135-141. [PMID: 31404387 PMCID: PMC6682554 DOI: 10.1293/tox.2018-0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/27/2019] [Indexed: 12/03/2022] Open
Abstract
Many approaches have been taken to identify new biomarkers of pancreatic ductal
carcinoma (PDC). Since animal models can be sampled under controlled conditions, better
standardization is possible compared with heterogeneous human studies. Transgenic rats
with conditional activation of oncogenic RAS in pancreatic tissue develop PDC that closely
resembles the biological and histopathological features of human PDC. Using this model, we
evaluated the usefulness of leucine-rich α2-glycoprotein-1 (LRG-1) as a serum marker. In
this study, we found that LRG-1 was overexpressed in rat PDC compared with normal pancreas
tissue of the control rats. Serum levels of LRG-1 were also significantly higher in rats
bearing PDC than in controls. Importantly, chronic pancreatitis in male Wistar Bonn/Kobori
rats, which is a widely accepted as a model of chronic pancreatitis, did not cause serum
levels of LRG-1 to become elevated. These results strongly support serum LRG-1 as a
candidate biomarker for noninvasive diagnosis of PDC. Our models of pancreas cancer
provide a useful strategy for evaluation of candidate markers applicable to human
cancer.
Collapse
Affiliation(s)
- Katsumi Fukamachi
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Yoshiaki Hagiwara
- Immuno-Biological Laboratories, 1091-1 Naka, Fujioka-shi, Gunma 375-0005, Japan
| | - Mitsuru Futakuchi
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - David B Alexander
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Masumi Suzui
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
2
|
Yarrow supercritical extract exerts antitumoral properties by targeting lipid metabolism in pancreatic cancer. PLoS One 2019; 14:e0214294. [PMID: 30913248 PMCID: PMC6435158 DOI: 10.1371/journal.pone.0214294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/11/2019] [Indexed: 12/15/2022] Open
Abstract
Metabolic reprogramming is considered a hallmark of cancer. Currently, the altered lipid metabolism in cancer is a topic of interest due to the prominent role of lipids regulating the progression of various types of tumors. Lipids and lipid-derived molecules have been shown to activate growth regulatory pathways and to promote malignancy in pancreatic cancer. In a previous work, we have described the antitumoral properties of Yarrow (Achillea Millefolium) CO2 supercritical extract (Yarrow SFE) in pancreatic cancer. Herein, we aim to investigate the underlaying molecular mechanisms by which Yarrow SFE induces cytotoxicity in pancreatic cancer cells. Yarrow SFE downregulates SREBF1 and downstream molecular targets of this transcription factor, such as fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD). Importantly, we demonstrate the in vivo effect of Yarrow SFE diminishing the tumor growth in a xenograft mouse model of pancreatic cancer. Our data suggest that Yarrow SFE can be proposed as a complementary adjuvant or nutritional supplement in pancreatic cancer therapy.
Collapse
|
3
|
Shibata K, Fukamachi K, Tsuji A, Saga T, Futakuchi M, Nagino M, Tsuda H, Suzui M. In vivo18F-fluorodeoxyglucose-positron emission tomography/computed tomography imaging of pancreatic tumors in a transgenic rat model carrying the human KRASG12V oncogene. Oncol Lett 2015; 9:2112-2118. [PMID: 26137023 DOI: 10.3892/ol.2015.3053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 12/19/2014] [Indexed: 11/06/2022] Open
Abstract
A novel KRAS-mediated transgenic rat model has previously been demonstrated, in which animals develop multiple pancreatic ductal adenocarcinoma (PDAC) that is histologically similar to human PDAC within two weeks. Positron emission tomography (PET)/computed tomography (CT) is commonly used for the diagnosis and staging of PDAC in humans, and can be adopted for optimal use in animal experiments. The aim of the present study was to evaluate the carcinogenic process in a rat pancreatic carcinoma model using small-animal multimodality imaging systems. The utility of fluorodeoxyglucose (FDG)-PET/CT in detecting the location and size of PDAC during tumor development in the present transgenic rat model was assessed. A small animal multimodality PET/CT system and contrast-enhanced CT (CECT) system were used for the imaging analysis of KRASG12V male transgenic rats (n=6), which developed pancreatic tumors following the administration of an injection of Cre recombinase (Cre)-carrying adenovirus. Laparotomies performed at six weeks post-treatment revealed that all three (100%) Cre-expressing rats developed pancreatic tumors that were <2 mm in diameter, none of which were detected by 18F-FDG PET/CT or CECT. At eight weeks post-treatment, the pancreatic tumors were heterogeneously visualized by 18F-FDG-PET/CT and CECT in two of the three rats. Furthermore, the autopsies confirmed that all three rats had developed pancreatic tumors. These novel findings provide evidence that the FDG-PET/CT imaging system is a valuable tool for the evaluation of the carcinogenic process, and one which may aid in treatment and preventive methods for pancreatic tumors in mammalian models. A limitation associated with the early detection of PDACs warrants further investigation.
Collapse
Affiliation(s)
- Koji Shibata
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi 467-8601, Japan ; Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Katsumi Fukamachi
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi 467-8601, Japan
| | - Atsushi Tsuji
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Chiba 263-8555, Japan
| | - Tsuneo Saga
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Chiba 263-8555, Japan
| | - Mitsuru Futakuchi
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi 467-8601, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hiroyuki Tsuda
- Laboratory of Nanotoxicology Project, Nagoya University, Nagoya, Aichi 467-8603, Japan
| | - Masumi Suzui
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
4
|
Fukamachi K, Iigo M, Hagiwara Y, Shibata K, Futakuchi M, Alexander DB, Hino O, Suzui M, Tsuda H. Rat N-ERC/mesothelin as a marker for in vivo screening of drugs against pancreas cancer. PLoS One 2014; 9:e111481. [PMID: 25347530 PMCID: PMC4210215 DOI: 10.1371/journal.pone.0111481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/25/2014] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a highly lethal disease, which is usually diagnosed in an advanced stage. We have established transgenic rats carrying a mutated K-ras gene controlled by Cre/loxP activation. The animals develop PDA which is histopathologically similar to that in humans. Previously, we reported that serum levels of N-ERC/mesothelin were significantly higher in rats bearing PDA than in controls. In the present study, to determine whether serum levels of N-ERC/mesothelin correlated with tumor size, we measured N-ERC/mesothelin levels in rats bearing PDA. Increased serum levels of N-ERC/mesothelin correlated with increased tumor size. This result indicates an interrelationship between the serum level of N-ERC/mesothelin and tumor size. We next investigated the effect of chemotherapy on serum N-ERC/mesothelin levels. Rat pancreatic cancer cells were implanted subcutaneously into the flank of NOD-SCID mice. In the mice treated with 200 mg/kg gemcitabine, tumor weight and the serum level of N-ERC/mesothelin were significantly decreased compared to controls. These results suggest that serum N-ERC/mesothelin measurements might be useful for monitoring response to therapy.
Collapse
Affiliation(s)
- Katsumi Fukamachi
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- * E-mail:
| | - Masaaki Iigo
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| | | | - Koji Shibata
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuru Futakuchi
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | - Okio Hino
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masumi Suzui
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| |
Collapse
|
5
|
Swierczynski J, Hebanowska A, Sledzinski T. Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World J Gastroenterol 2014; 20:2279-303. [PMID: 24605027 PMCID: PMC3942833 DOI: 10.3748/wjg.v20.i9.2279] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/25/2013] [Accepted: 01/03/2014] [Indexed: 02/07/2023] Open
Abstract
There is growing evidence that metabolic alterations play an important role in cancer development and progression. The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation. Elevated fatty acid synthesis is one of the most important aberrations of cancer cell metabolism. An enhancement of fatty acids synthesis is required both for carcinogenesis and cancer cell survival, as inhibition of key lipogenic enzymes slows down the growth of tumor cells and impairs their survival. Based on the data that serum fatty acid synthase (FASN), also known as oncoantigen 519, is elevated in patients with certain types of cancer, its serum level was proposed as a marker of neoplasia. This review aims to demonstrate the changes in lipid metabolism and other metabolic processes associated with lipid metabolism in pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic neoplasm, characterized by high mortality. We also addressed the influence of some oncogenic factors and tumor suppressors on pancreatic cancer cell metabolism. Additionally the review discusses the potential role of elevated lipid synthesis in diagnosis and treatment of pancreatic cancer. In particular, FASN is a viable candidate for indicator of pathologic state, marker of neoplasia, as well as, pharmacological treatment target in pancreatic cancer. Recent research showed that, in addition to lipogenesis, certain cancer cells can use fatty acids from circulation, derived from diet (chylomicrons), synthesized in liver, or released from adipose tissue for their growth. Thus, the interactions between de novo lipogenesis and uptake of fatty acids from circulation by PDAC cells require further investigation.
Collapse
|