1
|
Wei L, Gok MO, Svoboda JD, Kozul KL, Forny M, Friedman JR, Niemi NM. Dual-localized PPTC7 limits mitophagy through proximal and dynamic interactions with BNIP3 and NIX. Life Sci Alliance 2024; 7:e202402765. [PMID: 38991726 PMCID: PMC11239977 DOI: 10.26508/lsa.202402765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
PPTC7 is a mitochondrial-localized phosphatase that suppresses BNIP3- and NIX-mediated mitophagy, but the mechanisms underlying this regulation remain ill-defined. Here, we demonstrate that loss of PPTC7 upregulates BNIP3 and NIX post-transcriptionally and independent of HIF-1α stabilization. Loss of PPTC7 prolongs the half-life of BNIP3 and NIX while blunting their accumulation in response to proteasomal inhibition, suggesting that PPTC7 promotes the ubiquitin-mediated turnover of BNIP3 and NIX. Consistently, overexpression of PPTC7 limits the accumulation of BNIP3 and NIX protein levels, which requires an intact catalytic motif but is surprisingly independent of its targeting to mitochondria. Consistently, we find that PPTC7 is dual-localized to the outer mitochondrial membrane and the matrix. Importantly, anchoring PPTC7 to the outer mitochondrial membrane is sufficient to blunt BNIP3 and NIX accumulation, and proximity labeling and fluorescence co-localization experiments demonstrate that PPTC7 dynamically associates with BNIP3 and NIX within the native cellular environment. Collectively, these data reveal that a fraction of PPTC7 localizes to the outer mitochondrial membrane to promote the proteasomal turnover of BNIP3 and NIX, limiting basal mitophagy.
Collapse
Affiliation(s)
- Lianjie Wei
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Mehmet Oguz Gok
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jordyn D Svoboda
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Keri-Lyn Kozul
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Merima Forny
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jonathan R Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Natalie M Niemi
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
2
|
Ericson J, Ahlsson F, Wackernagel D, Wilson E. Equally Good Neurological, Growth, and Health Outcomes up to 6 Years of Age in Moderately Preterm Infants Who Received Exclusive vs. Fortified Breast Milk-A Longitudinal Cohort Study. Nutrients 2023; 15:2318. [PMID: 37242201 PMCID: PMC10223744 DOI: 10.3390/nu15102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Moderately preterm infants (32-36 weeks of gestational age) have an increased risk of worse health and developmental outcomes compared to infants born at term. Optimal nutrition may alter this risk. The aim of this study was to investigate the neurological, growth, and health outcomes up to six years of age in children born moderately preterm who receive either exclusive or fortified breast milk and/or formula in the neonatal unit. In this longitudinal cohort study, data were collected for 142 children. Data were collected up to six years of age via several questionnaires containing questions about demographics, growth, child health status, health care visits, and the Five to Fifteen Questionnaire. Data on the intake of breast milk, human milk fortification, formula, and growth during hospitalization were collected from the children's medical records. No statistically significant differences in neurological outcomes, growth, or health at six years of age were found between the two groups (exclusive breast milk, n = 43 vs. fortified breast milk and/or formula, n = 99). There is a need for research in larger populations to further assess potential effects on health and developmental outcomes when comparing the use of exclusive versus fortified breast milk for moderately preterm infants during neonatal hospitalization.
Collapse
Affiliation(s)
- Jenny Ericson
- School of Education, Health and Social Studies, Dalarna University, 791 88 Falun, Sweden
- Centre for Clinical Research Dalarna, Uppsala University, 791 82 Falun, Sweden
- Department of Pediatrics, Falu Hospital, 791 82 Falun, Sweden
| | - Fredrik Ahlsson
- Department of Women’s and Children’s Health, Uppsala University, 752 36 Uppsala, Sweden;
| | - Dirk Wackernagel
- Division of Neonatology, Department of Pediatrics, University Medical Center of the Johannes Gutenberg, University Mainz, 55131 Mainz, Germany;
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Emilija Wilson
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden;
| |
Collapse
|
3
|
Field JT, Gordon JW. BNIP3 and Nix: Atypical regulators of cell fate. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119325. [PMID: 35863652 DOI: 10.1016/j.bbamcr.2022.119325] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/17/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022]
Abstract
Since their discovery nearly 25 years ago, the BCL-2 family members BNIP3 and BNIP3L (aka Nix) have been labelled 'atypical'. Originally, this was because BNIP3 and Nix have divergent BH3 domains compared to other BCL-2 proteins. In addition, this atypical BH3 domain is dispensable for inducing cell death, which is also unusual for a 'death gene'. Instead, BNIP3 and Nix utilize a transmembrane domain, which allows for dimerization and insertion into and through organelle membranes to elicit cell death. Much has been learned regarding the biological function of these two atypical death genes, including their role in metabolic stress, where BNIP3 is responsive to hypoxia, while Nix responds variably to hypoxia and is also down-stream of PKC signaling and lipotoxic stress. Interestingly, both BNIP3 and Nix respond to signals related to cell atrophy. In addition, our current view of regulated cell death has expanded to include forms of necrosis such as necroptosis, pyroptosis, ferroptosis, and permeability transition-mediated cell death where BNIP3 and Nix have been shown to play context- and cell-type specific roles. Perhaps the most intriguing discoveries in recent years are the results demonstrating roles for BNIP3 and Nix outside of the purview of death genes, such as regulation of proliferation, differentiation/maturation, mitochondrial dynamics, macro- and selective-autophagy. We provide a historical and unbiased overview of these 'death genes', including new information related to alternative splicing and post-translational modification. In addition, we propose to redefine these two atypical members of the BCL-2 family as versatile regulators of cell fate.
Collapse
Affiliation(s)
- Jared T Field
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Canada; The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Canada; College of Nursing, Rady Faculty of Health Science, University of Manitoba, Canada; The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.
| |
Collapse
|
4
|
Misoprostol treatment prevents hypoxia-induced cardiac dysfunction through a 14-3-3 and PKA regulatory motif on Bnip3. Cell Death Dis 2021; 12:1105. [PMID: 34824192 PMCID: PMC8617186 DOI: 10.1038/s41419-021-04402-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022]
Abstract
Systemic hypoxia is a common element in most perinatal emergencies and is a known driver of Bnip3 expression in the neonatal heart. Bnip3 plays a prominent role in the evolution of necrotic cell death, disrupting ER calcium homeostasis and initiating mitochondrial permeability transition (MPT). Emerging evidence suggests a cardioprotective role for the prostaglandin E1 analog misoprostol during periods of hypoxia, but the mechanisms for this protection are not completely understood. Using a combination of mouse and cell models, we tested if misoprostol is cardioprotective during neonatal hypoxic injury by altering Bnip3 function. Here we report that hypoxia elicits mitochondrial-fragmentation, MPT, reduced ejection fraction, and evidence of necroinflammation, which were abrogated with misoprostol treatment or Bnip3 knockout. Through molecular studies we show that misoprostol leads to PKA-dependent Bnip3 phosphorylation at threonine-181, and subsequent redistribution of Bnip3 from mitochondrial Opa1 and the ER through an interaction with 14-3-3 proteins. Taken together, our results demonstrate a role for Bnip3 phosphorylation in the regulation of cardiomyocyte contractile/metabolic dysfunction, and necroinflammation. Furthermore, we identify a potential pharmacological mechanism to prevent neonatal hypoxic injury.
Collapse
|
5
|
Hossain Z, Qasem WA, Friel JK, Omri A. Effects of Total Enteral Nutrition on Early Growth, Immunity, and Neuronal Development of Preterm Infants. Nutrients 2021; 13:2755. [PMID: 34444915 PMCID: PMC8401306 DOI: 10.3390/nu13082755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/16/2022] Open
Abstract
The feeding of colostrum and mother's transitional milk improves immune protection and neurodevelopmental outcomes. It also helps with gut maturation and decreases the risks of infection. The supply of nutrients from human milk (HM) is not adequate for preterm infants, even though preterm mother's milk contains higher concentrations of protein, sodium, zinc, and calcium than mature HM. The human milk fortifiers, particularly those with protein, calcium, and phosphate, should be used to supplement HM to meet the necessities of preterm infants. The management of fluid and electrolytes is a challenging aspect of neonatal care of preterm infants. Trace minerals such as iron, zinc, copper, iodine, manganese, molybdenum, selenium, chromium, and fluoride are considered essential for preterm infants. Vitamins such as A, D, E, and K play an important role in the prevention of morbidities, such as bronchopulmonary dysplasia, retinopathy of prematurity, and intraventricular hemorrhage. Therefore, supplementation of HM with required nutrients is recommended for all preterm infants.
Collapse
Affiliation(s)
- Zakir Hossain
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Wafaa A Qasem
- Department of Surgery, Mubarak AlKabeer Hospital, Hawally 32052, Kuwait;
- Community Medicine Department, Faculty of Medicine, Kuwait University, Kuwait City 13003, Kuwait
| | - James K. Friel
- Richardson Centre for Functional Foods and Nutraceuticals, Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| |
Collapse
|
6
|
Yu XR, Xie WP, Liu JF, Wang LW, Cao H, Chen Q. Effect of the Addition of Human Milk Fortifier to Breast Milk on the Early Recovery of Infants After Congenital Cardiac Surgery. Front Pediatr 2021; 9:661927. [PMID: 33987154 PMCID: PMC8110819 DOI: 10.3389/fped.2021.661927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: This article studied the effect of breast milk supplemented with human milk fortifier (HMF) on the early recovery of infants after congenital cardiac surgery. Methods: Infants undergoing congenital cardiac surgery were randomly divided into an intervention group (n = 27) and a control group (n = 27). Infants in the intervention group received HMF, and those in the control group were exclusively breastfed. The nutritional indicators at discharge, the postoperative recovery status, and nutritional-related complications were recorded. Results: Compared with the control group at the time of discharge, the weight and albumin and prealbumin levels of the intervention group were significantly increased (P < 0.05). The length of hospital stay of the intervention group was significantly reduced compared with that of the control group (P < 0.05). Although the length of ICU stay for the intervention group was shorter than that of the control group, the difference was not significant (P > 0.05). No significant difference in the incidence of postoperative nutrition-related complications was noted between the two groups (P > 0.05). Conclusion: Compared with breastfeeding alone, with HMF can improve postoperative weight gains, reduce the length of stay, and promote infants' early recovery after congenital cardiac surgery.
Collapse
Affiliation(s)
- Xian-Rong Yu
- Department of Cardiac Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China.,Fujian Branch of Shanghai Children's Medical Center, Fuzhou, China.,Fujian Children's Hospital, Fuzhou, China
| | - Wen-Peng Xie
- Department of Cardiac Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China.,Fujian Branch of Shanghai Children's Medical Center, Fuzhou, China.,Fujian Children's Hospital, Fuzhou, China
| | - Jian-Feng Liu
- Department of Cardiac Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China.,Fujian Branch of Shanghai Children's Medical Center, Fuzhou, China.,Fujian Children's Hospital, Fuzhou, China
| | - Li-Wen Wang
- Department of Cardiac Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China.,Fujian Branch of Shanghai Children's Medical Center, Fuzhou, China.,Fujian Children's Hospital, Fuzhou, China
| | - Hua Cao
- Department of Cardiac Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China.,Fujian Branch of Shanghai Children's Medical Center, Fuzhou, China.,Fujian Children's Hospital, Fuzhou, China
| | - Qiang Chen
- Department of Cardiac Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China.,Fujian Branch of Shanghai Children's Medical Center, Fuzhou, China.,Fujian Children's Hospital, Fuzhou, China
| |
Collapse
|
7
|
Martens MD, Field JT, Seshadri N, Day C, Chapman D, Keijzer R, Doucette CA, Hatch GM, West AR, Ivanco TL, Gordon JW. Misoprostol attenuates neonatal cardiomyocyte proliferation through Bnip3, perinuclear calcium signaling, and inhibition of glycolysis. J Mol Cell Cardiol 2020; 146:19-31. [DOI: 10.1016/j.yjmcc.2020.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/03/2020] [Accepted: 06/27/2020] [Indexed: 02/02/2023]
|
8
|
Bazacliu C, Neu J. Pathophysiology of Necrotizing Enterocolitis: An Update. Curr Pediatr Rev 2019; 15:68-87. [PMID: 30387398 DOI: 10.2174/1573396314666181102123030] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022]
Abstract
NEC is a devastating disease that, once present, is very difficult to treat. In the absence of an etiologic treatment, preventive measures are required. Advances in decoding the pathophysiology of NEC are being made but a more comprehensive understanding is needed for the targeting of preventative strategies. A better definition of the disease as well as diagnostic criteria are needed to be able to specifically label a disease as NEC. Multiple environmental factors combined with host susceptibility appear to contribute to enhanced risks for developing this disease. Several different proximal pathways are involved, all leading to a common undesired outcome: Intestinal necrosis. The most common form of this disease appears to involve inflammatory pathways that are closely meshed with the intestinal microbiota, where a dysbiosis may result in dysregulated inflammation. The organisms present in the intestinal tract prior to the onset of NEC along with their diversity and functional capabilities are just beginning to be understood. Fulfillment of postulates that support causality for particular microorganisms is needed if bacteriotherapies are to be intelligently applied for the prevention of NEC. Identification of molecular effector pathways that propagate inflammation, understanding of, even incipient role of genetic predisposition and of miRNAs may help solve the puzzle of this disease and may bring the researchers closer to finding a treatment. Despite recent progress, multiple limitations of the current animal models, difficulties related to studies in humans, along with the lack of a "clear" definition will continue to make it a very challenging disease to decipher.
Collapse
Affiliation(s)
- Catalina Bazacliu
- Department of Pediatrics, Division of Neonatology, University of Florida, FL, United States
| | - Josef Neu
- Department of Pediatrics, Division of Neonatology, University of Florida, FL, United States
| |
Collapse
|
9
|
Misoprostol regulates Bnip3 repression and alternative splicing to control cellular calcium homeostasis during hypoxic stress. Cell Death Discov 2018; 4:37. [PMID: 30275982 PMCID: PMC6155004 DOI: 10.1038/s41420-018-0104-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/05/2018] [Accepted: 08/05/2018] [Indexed: 12/15/2022] Open
Abstract
The cellular response to hypoxia involves the activation of a conserved pathway for gene expression regulated by the transcription factor complex called hypoxia-inducible factor (HIF). This pathway has been implicated in both the adaptive response to hypoxia and in several hypoxic-ischemic-related pathologies. Perinatal hypoxic injury, often associated with prematurity, leads to multi-organ dysfunction resulting in significant morbidity and mortality. Using a rodent model of neonatal hypoxia and several representative cell lines, we observed HIF1α activation and down-stream induction of the cell death gene Bnip3 in brain, large intestine, and heart which was mitigated by administration of the prostaglandin E1 analog misoprostol. Mechanistically, we determined that misoprostol inhibits full-length Bnip3 (Bnip3-FL) expression through PKA-mediated NF-κB (P65) nuclear retention, and the induction of pro-survival splice variants. We observed that the dominant small pro-survival variant of Bnip3 in mouse cells lacks the third exon (Bnip3ΔExon3), whereas human cells produce a pro-survival BNIP3 variant lacking exon 2 (BNIP3ΔExon2). In addition, these small Bnip3 splice variants prevent mitochondrial dysfunction, permeability transition, and necrosis triggered by Bnip3-FL by blocking calcium transfer from the sarco/endoplasmic reticulum to the mitochondria. Furthermore, misoprostol and Bnip3ΔExon3 promote nuclear calcium accumulation, resulting in HDAC5 nuclear export, NFAT activation, and adaptive changes in cell morphology and gene expression. Collectively, our data suggests that misoprostol can mitigate the potential damaging effects of hypoxia on multiple cell types by activating adaptive cell survival pathways through Bnip3 repression and alternative splicing.
Collapse
|