1
|
Halaby CA, Young SP, Austin S, Stefanescu E, Bali D, Clinton LK, Smith B, Pendyal S, Upadia J, Schooler GR, Mavis AM, Kishnani PS. Liver fibrosis during clinical ascertainment of glycogen storage disease type III: a need for improved and systematic monitoring. Genet Med 2019; 21:2686-2694. [PMID: 31263214 DOI: 10.1038/s41436-019-0561-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE In glycogen storage disease type III (GSD III), liver aminotransferases tend to normalize with age giving an impression that hepatic manifestations improve with age. However, despite dietary treatment, long-term liver complications emerge. We present a GSD III liver natural history study in children to better understand changes in hepatic parameters with age. METHODS We reviewed clinical, biochemical, histological, and radiological data in pediatric patients with GSD III, and performed a literature review of GSD III hepatic findings. RESULTS Twenty-six patients (median age 12.5 years, range 2-22) with GSD IIIa (n = 23) and IIIb (n = 3) were enrolled in the study. Six of seven pediatric patients showed severe fibrosis on liver biopsy (median [range] age: 1.25 [0.75-7] years). Markers of liver injury (aminotransferases), dysfunction (cholesterol, triglycerides), and glycogen storage (glucose tetrasaccharide, Glc4) were elevated at an early age, and decreased significantly thereafter (p < 0.001). Creatine phosphokinase was also elevated with no significant correlation with age (p = 0.4). CONCLUSION Liver fibrosis can occur at an early age, and may explain the decrease in aminotransferases and Glc4 with age. Our data outlines the need for systematic follow-up and specific biochemical and radiological tools to monitor the silent course of the liver disease process.
Collapse
Affiliation(s)
- Carine A Halaby
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Sarah P Young
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Stephanie Austin
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Ela Stefanescu
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Deeksha Bali
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Lani K Clinton
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Brian Smith
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Surekha Pendyal
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Jariya Upadia
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Gary R Schooler
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Alisha M Mavis
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
2
|
Squires RH, Ng V, Romero R, Ekong U, Hardikar W, Emre S, Mazariegos GV. Evaluation of the pediatric patient for liver transplantation: 2014 practice guideline by the American Association for the Study of Liver Diseases, American Society of Transplantation and the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. Hepatology 2014; 60:362-98. [PMID: 24782219 DOI: 10.1002/hep.27191] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Robert H Squires
- Department of Pediatrics, University of Pittsburgh School of Medicine; Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA
| | | | | | | | | | | | | |
Collapse
|
3
|
Yi H, Thurberg BL, Curtis S, Austin S, Fyfe J, Koeberl DD, Kishnani PS, Sun B. Characterization of a canine model of glycogen storage disease type IIIa. Dis Model Mech 2012; 5:804-11. [PMID: 22736456 PMCID: PMC3484863 DOI: 10.1242/dmm.009712] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glycogen storage disease type IIIa (GSD IIIa) is an autosomal recessive disease caused by deficiency of glycogen debranching enzyme (GDE) in liver and muscle. The disorder is clinically heterogeneous and progressive, and there is no effective treatment. Previously, a naturally occurring dog model for this condition was identified in curly-coated retrievers (CCR). The affected dogs carry a frame-shift mutation in the GDE gene and have no detectable GDE activity in liver and muscle. We characterized in detail the disease expression and progression in eight dogs from age 2 to 16 months. Monthly blood biochemistry revealed elevated and gradually increasing serum alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) activities; serum creatine phosphokinase (CPK) activity exceeded normal range after 12 months. Analysis of tissue biopsy specimens at 4, 12 and 16 months revealed abnormally high glycogen contents in liver and muscle of all dogs. Fasting liver glycogen content increased from 4 months to 12 months, but dropped at 16 months possibly caused by extended fibrosis; muscle glycogen content continually increased with age. Light microscopy revealed significant glycogen accumulation in hepatocytes at all ages. Liver histology showed progressive, age-related fibrosis. In muscle, scattered cytoplasmic glycogen deposits were present in most cells at 4 months, but large, lake-like accumulation developed by 12 and 16 months. Disruption of the contractile apparatus and fraying of myofibrils was observed in muscle at 12 and 16 months by electron microscopy. In conclusion, the CCR dogs are an accurate model of GSD IIIa that will improve our understanding of the disease progression and allow opportunities to investigate treatment interventions.
Collapse
Affiliation(s)
- Haiqing Yi
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|