1
|
Azarova I, Polonikov A, Klyosova E. Molecular Genetics of Abnormal Redox Homeostasis in Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24054738. [PMID: 36902173 PMCID: PMC10003739 DOI: 10.3390/ijms24054738] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Numerous studies have shown that oxidative stress resulting from an imbalance between the production of free radicals and their neutralization by antioxidant enzymes is one of the major pathological disorders underlying the development and progression of type 2 diabetes (T2D). The present review summarizes the current state of the art advances in understanding the role of abnormal redox homeostasis in the molecular mechanisms of T2D and provides comprehensive information on the characteristics and biological functions of antioxidant and oxidative enzymes, as well as discusses genetic studies conducted so far in order to investigate the contribution of polymorphisms in genes encoding redox state-regulating enzymes to the disease pathogenesis.
Collapse
Affiliation(s)
- Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Alexey Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Correspondence:
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|
2
|
Hu T, Zhou G, Li W. Association Between the Individual and Combined Effects of the GSTM1 and GSTT1 Polymorphisms and Risk of Leukemia: A Meta-Analysis. Front Genet 2022; 13:898937. [PMID: 35938012 PMCID: PMC9355274 DOI: 10.3389/fgene.2022.898937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Fourteen meta-analyses reported the individual effects of the GSTM1 and GSTT1 polymorphisms on leukemia risk. However, over 40 studies were not included in previously published meta-analyses. Moreover, one key aspect was that previous meta-analyses did not conduct the false-positive test on the aforementioned issues. Furthermore, previous meta-analyses did not observe the combined effects of GSTM1 present/null and GSTT1 present/null polymorphism with leukemia risk. Therefore, we conducted the current study to further analyze these associations. Objectives: This study aimed to investigate the association between the individual and combined effects of the GSTM1 present/null and GSTT1 present/null polymorphisms and the risk of leukemia. Methods: A meta-analysis was performed applying Meta-analyses of Observational Studies in Epidemiology (MOOSE) guidelines. Moreover, false-positive report probability (FPRP) and Bayesian false discovery probability (BFDP) were applied to investigate the false-positive results. Results: The individual GSTM1 and GSTT1 null genotypes and combined effects of the two genes were associated with a significantly increased leukemia risk in overall and several subgroup analyses, such as Asians, Caucasians, and so on. Then, further analysis was conducted using FPRP and BFDP. Significant associations were considered as "positive" results on the GSTM1 null genotype with leukemia risk in overall populations (FPRP < 0.001 and BFDP = 0.006), Asians (FPRP < 0.001 and BFDP < 0.001), and East Asian population (FPRP < 0.001 and BFDP = 0.002). For the GSTT1 null genotype, significant associations were regarded "positive" results in overall populations, acute myeloid leukemia (AML), Asians, and East Asian population. For the combined effects of the GSTM1 and GSTT1 polymorphisms, significant associations were also considered "positive" results in the overall analysis of Asians, Indians, and East Asian population. Conclusion: This study strongly indicates that the individual GSTM1 and GSTT1 null genotypes and combined effects of the two genes are associated with increased leukemia risk in Asians, especially in the East Asian population; the GSTT1 null genotype is associated with increased AML risk; the combined effects of the two genes are associated with increased leukemia risk in Indians.
Collapse
Affiliation(s)
- Ting Hu
- Department of Hematology, Pingxiang People’s Hospital, Pingxiang, China
| | - Guozhong Zhou
- Department of Cardiology, Pingxiang People’s Hospital, Pingxiang, China
| | - Wenjin Li
- Department of Hematology, Pingxiang People’s Hospital, Pingxiang, China
| |
Collapse
|
3
|
Bhat A, Bhat GR, Verma S, Sharma B, Bakshi D, Abrol D, Singh S, Qadri RA, Shah R, Kumar R. Evaluation of 17 genetic variants in association with leukemia in the north Indian population using MassARRAY Sequenom. J Biochem Mol Toxicol 2021; 35:e22792. [PMID: 33928715 DOI: 10.1002/jbt.22792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 12/24/2022]
Abstract
Leukemia is a heterogeneous disorder, characterized by elevated proliferation of white blood cells. In this study, we explored the association of 17 genetic variants with leukemia patients in the Jammu and Kashmir region of north India. The variants were genotyped by using a high-throughput Agena MassARRAY platform in 758 individuals (166 cases and 592 controls). Of the 17 single-nucleotide polymorphisms (SNPs) studied, five SNPs were showing significant association with the high risk of leukemia in the north Indian population, which includes rs10069690 of telomere reverse transcriptase (TERT) with OR = 0.34 (95% CI, 0.20-0.58; p = .0008), rs2972392 (PSCA) with OR 1.86 (95% CI, 1.04-3.81; p = .035), rs4986764 (BRIP1) with OR 1.34 (95% CI, 1.00-1.80; p = .04), rs6990097 (TNKS) with OR 1.81 (95% CI, 1.2-2.6; p = .001) and rs12190287 (TCF21) with OR 2.87 (95% CI, 1.72-4.7; p = .0001) by allelic association using Plink and analyzed by SPSS. This is the first study to explore these variants with leukemia in the studied population.
Collapse
Affiliation(s)
- Amrita Bhat
- Cancer Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Gh Rasool Bhat
- Cancer Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Sonali Verma
- ICMR-CAR, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Bhanu Sharma
- Cancer Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Divya Bakshi
- Cancer Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Deepak Abrol
- Department of Radiotherapy, Government Medical College Kathua, Jammu and Kashmir, India
| | - Supinder Singh
- Department of Medicine, ASCOMS, Sidhra, Jammu and Kashmir, India
| | | | - Ruchi Shah
- ICMR-CAR, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Rakesh Kumar
- Cancer Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| |
Collapse
|
4
|
The impact of CYP2D6*4 and GSTP1 Ile105Val polymorphisms on the susceptibility to develop BCR-ABL1 negative myeloproliferative neoplasms. Mol Biol Rep 2020; 47:7413-7420. [PMID: 32918123 DOI: 10.1007/s11033-020-05796-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Inter-individual variations in the genes encoding xenobiotic-metabolizing enzymes have been reported to alter susceptibility to various diseases involving hematological disorders. The purpose of this case-control study was to investigate the relationship between CYP2D6*4 and GSTP1 Ile105Val polymorphisms and the risk of developing BCR-ABL1 negative myeloproliferative neoplasms (MPN). PCR-RFLP was used for genotyping single nucleotide polymorphisms (SNP) in CYP2D6 and GSTP1 in 139 patients with MPN and 126 controls. There was a significantly increased risk for developing BCR-ABL1 negative MPN for the group bearing the CYP2D6*4 variant allele (X2: 4.487; OR 1.738; 95% CI 1.040-2.904; p = 0.034). The platelet count was higher in CYP2D6*4 allele carriers (p = 0.047). There was no association between the GSTP1 Ile105Val polymorphism and the risk of developing MPNs. MPN patients bearing the GSTP1 Ile105Val variant allele had a higher prevalence of bleeding complications (X2: 7.510; OR 4.635; 95% CI 1.466-14.650; p = 0.006). Our study provides new data that the CYP2D6*4 polymorphism may be associated with an increased risk to develop MPNs while the GSTP1 Ile105Val polymorphism does not show such an association. To our knowledge, the current study is the first to investigate the relationship between CYP2D6*4 and GSTP1 Ile105Val polymorphisms and the risk of developing MPNs in the Turkish population. Further studies with more patients and controls are needed to support our data.
Collapse
|
5
|
Al-Eitan LN, Rababa'h DM, Alghamdi MA, Khasawneh RH. Association Of GSTM1, GSTT1 And GSTP1 Polymorphisms With Breast Cancer Among Jordanian Women. Onco Targets Ther 2019; 12:7757-7765. [PMID: 31571925 PMCID: PMC6760517 DOI: 10.2147/ott.s207255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose Genetic predisposition to disease has become one of the most investigated risk factors in recent years, and breast cancer (BC) is no exception. In this study, we investigated specific genetic variants of three candidate genes belonging to the glutathione-S-transferase superfamily that have been implicated in increased risk of cancers. Materials and methods This case-control study comprised 241 Jordanian women who were diagnosed with BC in addition to 219 matched controls. Gel electrophoresis of PCR products was used to visualize and genotype both the GSTM1 and GSTT1 genes, while PCR-RFLP was employed to genotype the rs1695 of the GSTP1 gene. Results Our findings did not reveal any correlation between the investigated polymorphisms of GST genes and BC risk among Jordanian women. Otherwise, the combination of GSTM1 entire gene deletion and (GG) genotype of GSTP1 polymorphism (rs1695) was significantly associated with BC with p-value <0.05 (i.e. p-value was not significant after correcting for multiple comparison). Conclusion We suggest that the interaction between GSTM1 polymorphism and rs1695 of GSTP1 may influence BC development and progression among Jordanian women. More epidemiological studies are needed to provide a baseline for the underlying role of GSTs polymorphisms in tumorigenesis.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Doaa M Rababa'h
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Rame H Khasawneh
- Department of Hematopathology, King Hussein Medical Center (KHMC), Jordanian Royal Medical Services (RMS), Amman 11118, Jordan
| |
Collapse
|