1
|
Krasnanska G, Blandova G, Baldovic M, Andrejkova M, Konecny M. Novel Missense DNA Variants in the IL2RG Gene Identified in Slovak X-linked Severe Combined Immunodeficiency Disease Patients: A Case Report. Cureus 2024; 16:e75872. [PMID: 39822469 PMCID: PMC11737466 DOI: 10.7759/cureus.75872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/19/2025] Open
Abstract
X-linked severe combined immunodeficiency disease (X-SCID) is a form of inborn errors of immunity (IEI) associated with causal DNA variants of the IL2RG gene. Patients with X-SCID are characterized by a combination of cellular and humoral immunodeficiencies associated with increased susceptibility to infections. The presented cases constituted two unrelated male patients from the Slovak population. Proband A was primarily hospitalized at the age of three months because of recurrent fever, vomiting, and lethargy, and the atypical immunophenotype was determined to be T-B-NK-. For proband B, the first hospitalization occurred at the age of eight months because of generalized impetiginized dermatitis. Whole exome sequencing (WES) was performed via a comprehensive approach in patients with undefined IEI, and causal DNA variants were confirmed by Sanger sequencing. WES analysis in probands identified the currently undescribed hemizygous variants p.Asn84Thr and p.Val213Ala in the IL2RG gene. Segregation analysis of p.Asn84Thr indicated a de novo origin, and p.Val213Ala was detected only in the asymptomatic proband's mother. We comprehensively reconsidered and scored both variants based on biological and clinical aspects. Finally, taking all the information into account, we classified p.Asn84Thr as likely pathogenic and p.Val213Ala as likely pathogenic with mild penetrance based on the fulfilled ACMG (American College of Medical Genetics and Genomics) criteria for computational predictions, clinical correlations, localization at functional site, and de novo status. With the WES approach, we identified two novel, not yet reported, IL2RG variants in the Slovak population of X-SCID patients. These findings strengthen the fact that rapid and comprehensive molecular-genetic diagnostics of IEI is necessary for the early definition of precise diagnosis, which further enables appropriate treatment and patient management.
Collapse
Affiliation(s)
- Gabriela Krasnanska
- Department of Biology, Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of St. Cyril and Methodius, Trnava, SVK
| | - Gabriela Blandova
- Laboratory of Genomic Medicine, GHC GENETICS SK, Comenius University Science Park, Bratislava, SVK
| | - Marian Baldovic
- Laboratory of Genomic Medicine, GHC GENETICS SK, Comenius University Science Park, Bratislava, SVK
| | - Maria Andrejkova
- Department of Paediatrics, Faculty of Medicine, Pavol Jozef Safarik University and Children's Faculty Hospital, Centre for Inborn Errors of Immunity and Clinical Genomics, Kosice, SVK
| | - Michal Konecny
- Laboratory of Genomic Medicine, GHC GENETICS SK, Comenius University Science Park, Bratislava, SVK
| |
Collapse
|
2
|
Halacli SO. The effect of mutatio-type on proteo-phenotype and clinico-phenotype in selected primary immunodeficiencies. Immunol Res 2021; 70:56-66. [PMID: 34622368 DOI: 10.1007/s12026-021-09239-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/25/2021] [Indexed: 11/29/2022]
Abstract
In the diagnosis of primary immunodeficiencies which are heterogeneous groups of genetic disorders, next-generation sequencing strategies take an important place. Protein expression analyses and some functional studies which are fundamental to determine the pathogenicity of the mutation are also performed to accelerate the diagnosis of PIDs before sequencing. However, protein expressions and functions do not always reflect the genetic and clinical background of the disease even the existence of a pathogenic variant or vice versa. In this study, it was aimed to understand genotype-proteophenotype-clinicophenotype correlation by investigating the effect of mutation types on protein expression, function, and clinical severity in X-linked, autosomal dominant, and autosomal recessive forms of PIDs. It was searched in PubMed and Web of Science without any restrictions on study design and publication time. Totally, 1178 patients with PIDs who have 553 different mutations were investigated from 174 eligible full-text articles. For all mutations, the effect of mutation type on protein expressions and protein functions was analyzed. Furthermore, the most frequent missense and nonsense mutations that were identified in patients with PIDs were evaluated to determine the genotype-clinicophenotype correlation. Protein expressions and functions were changed depending on the mutation type and the affected domain. A significant relationship was observed between protein expression level and clinical severity among all investigated patients. There was also a positive correlation between clinical severity and the affected domains. Mutation types and affected domains should be carefully evaluated with respect to protein expression levels and functional changes during the evaluation of clinico-phenotype.
Collapse
Affiliation(s)
- Sevil Oskay Halacli
- Division of Pediatric Immunology, Department of Basic Sciences of Pediatrics, Institute of Child's Health, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
3
|
Tuovinen EA, Grönholm J, Öhman T, Pöysti S, Toivonen R, Kreutzman A, Heiskanen K, Trotta L, Toiviainen-Salo S, Routes JM, Verbsky J, Mustjoki S, Saarela J, Kere J, Varjosalo M, Hänninen A, Seppänen MRJ. Novel Hemizygous IL2RG p.(Pro58Ser) Mutation Impairs IL-2 Receptor Complex Expression on Lymphocytes Causing X-Linked Combined Immunodeficiency. J Clin Immunol 2020; 40:503-514. [PMID: 32072341 PMCID: PMC7142052 DOI: 10.1007/s10875-020-00745-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/06/2020] [Indexed: 11/30/2022]
Abstract
Hypomorphic IL2RG mutations may lead to milder phenotypes than X-SCID, named variably as atypical X-SCID or X-CID. We report an 11-year-old boy with a novel c. 172C>T;p.(Pro58Ser) mutation in IL2RG, presenting with atypical X-SCID phenotype. We also review the growing number of hypomorphic IL2RG mutations causing atypical X-SCID. We studied the patient's clinical phenotype, B, T, NK, and dendritic cell phenotypes, IL2RG and CD25 cell surface expression, and IL-2 target gene expression, STAT tyrosine phosphorylation, PBMC proliferation, and blast formation in response to IL-2 stimulation, as well as protein-protein interactions of the mutated IL2RG by BioID proximity labeling. The patient suffered from recurrent upper and lower respiratory tract infections, bronchiectasis, and reactive arthritis. His total lymphocyte counts have remained normal despite skewed T and B cells subpopulations, with very low numbers of plasmacytoid dendritic cells. Surface expression of IL2RG was reduced on his lymphocytes. This led to impaired STAT tyrosine phosphorylation in response to IL-2 and IL-21, reduced expression of IL-2 target genes in patient CD4+ T cells, and reduced cell proliferation in response to IL-2 stimulation. BioID proximity labeling showed aberrant interactions between mutated IL2RG and ER/Golgi proteins causing mislocalization of the mutated IL2RG to the ER/Golgi interface. In conclusion, IL2RG p.(Pro58Ser) causes X-CID. Failure of IL2RG plasma membrane targeting may lead to atypical X-SCID. We further identified another carrier of this mutation from newborn SCID screening, lost to closer scrutiny.
Collapse
Affiliation(s)
- Elina A Tuovinen
- Folkhälsan Research Center, Helsinki, Finland.,Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,Rare Diseases Center and Pediatric Research Center, New Children's Hospital, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Juha Grönholm
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland. .,Rare Diseases Center and Pediatric Research Center, New Children's Hospital, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland.
| | - Tiina Öhman
- Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sakari Pöysti
- Department of Clinical Microbiology and Immunology, Turku University Hospital and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Raine Toivonen
- Department of Clinical Microbiology and Immunology, Turku University Hospital and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anna Kreutzman
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Kaarina Heiskanen
- Rare Diseases Center and Pediatric Research Center, New Children's Hospital, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Luca Trotta
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sanna Toiviainen-Salo
- Department of Pediatric Radiology, HUS Medical Imaging Center, Radiology, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - John M Routes
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James Verbsky
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Satu Mustjoki
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Janna Saarela
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland.,Department of Medical Genetics, Helsinki Central University Hospital, Helsinki, Finland.,Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Juha Kere
- Folkhälsan Research Center, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Markku Varjosalo
- Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Arno Hänninen
- Department of Clinical Microbiology and Immunology, Turku University Hospital and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Mikko R J Seppänen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,Rare Diseases Center and Pediatric Research Center, New Children's Hospital, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
4
|
Arcas-García A, Garcia-Prat M, Magallón-Lorenz M, Martín-Nalda A, Drechsel O, Ossowski S, Alonso L, Rivière JG, Soler-Palacín P, Colobran R, Sayós J, Martínez-Gallo M, Franco-Jarava C. The IL-2RG R328X nonsense mutation allows partial STAT-5 phosphorylation and defines a critical region involved in the leaky-SCID phenotype. Clin Exp Immunol 2020; 200:61-72. [PMID: 31799703 DOI: 10.1111/cei.13405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2019] [Indexed: 01/10/2023] Open
Abstract
In addition to their detection in typical X-linked severe combined immunodeficiency, hypomorphic mutations in the interleukin (IL)-2 receptor common gamma chain gene (IL2RG) have been described in patients with atypical clinical and immunological phenotypes. In this leaky clinical phenotype the diagnosis is often delayed, limiting prompt therapy in these patients. Here, we report the biochemical and functional characterization of a nonsense mutation in exon 8 (p.R328X) of IL2RG in two siblings: a 4-year-old boy with lethal Epstein-Barr virus-related lymphoma and his asymptomatic 8-month-old brother with a Tlow B+ natural killer (NK)+ immunophenotype, dysgammaglobulinemia, abnormal lymphocyte proliferation and reduced levels of T cell receptor excision circles. After confirming normal IL-2RG expression (CD132) on T lymphocytes, signal transducer and activator of transcription-1 (STAT-5) phosphorylation was examined to evaluate the functionality of the common gamma chain (γc ), which showed partially preserved function. Co-immunoprecipitation experiments were performed to assess the interaction capacity of the R328X mutant with Janus kinase (JAK)3, concluding that R328X impairs JAK3 binding to γc . Here, we describe how the R328X mutation in IL-2RG may allow partial phosphorylation of STAT-5 through a JAK3-independent pathway. We identified a region of three amino acids in the γc intracellular domain that may be critical for receptor stabilization and allow this alternative signaling. Identification of the functional consequences of pathogenic IL2RG variants at the cellular level is important to enable clearer understanding of partial defects leading to leaky phenotypes.
Collapse
Affiliation(s)
- A Arcas-García
- CIBBIM-Nanomedicine-Immune Regulation and Immunotherapy Group, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - M Garcia-Prat
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Campus Hospitalari, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - M Magallón-Lorenz
- CIBBIM-Nanomedicine-Immune Regulation and Immunotherapy Group, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - A Martín-Nalda
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Campus Hospitalari, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - O Drechsel
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - S Ossowski
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - L Alonso
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Hematopoietic Stem Cell Transplantation Unit, Pediatric Hematology and Oncology Department, Vall d'Hebron Campus Hospitalari, Barcelona, Spain
| | - J G Rivière
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Campus Hospitalari, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - P Soler-Palacín
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Campus Hospitalari, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - R Colobran
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Genetics Department, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - J Sayós
- CIBBIM-Nanomedicine-Immune Regulation and Immunotherapy Group, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - M Martínez-Gallo
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - C Franco-Jarava
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|