1
|
Lv Y, Xian Y, Lei X, Xie S, Zhang B. The role of the microbiota-gut-brain axis and artificial intelligence in cognitive health of pediatric obstructive sleep apnea: A narrative review. Medicine (Baltimore) 2024; 103:e40900. [PMID: 39686454 DOI: 10.1097/md.0000000000040900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Pediatric obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder associated with significant neurocognitive and behavioral impairments. Recent studies have highlighted the role of gut microbiota and the microbiota-gut-brain axis (MGBA) in influencing cognitive health in children with OSA. This narrative review aims to summarize current knowledge on the relationship between gut microbiota, MGBA, and cognitive function in pediatric OSA. It also explores the potential of artificial intelligence and machine learning in advancing this field and identifying novel therapeutic strategies. Pediatric OSA is associated with gut dysbiosis, reduced microbial diversity, and metabolic disruptions. MGBA mechanisms, such as endocrine, immune, and neural pathways, link gut microbiota to cognitive outcomes. Artificial intelligence and machine learning methodologies offer promising tools to uncover microbial markers and mechanisms associated with cognitive deficits in OSA. Future research should focus on validating these findings through clinical trials and developing personalized therapeutic approaches targeting the gut microbiota.
Collapse
Affiliation(s)
- Yunjiao Lv
- Department of First Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Yongtao Xian
- Department of First Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Xinye Lei
- Department of First Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Siqi Xie
- Department of First Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Biyun Zhang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Vasilev GV, Miteva D, Gulinac M, Chervenkov L, Kitanova M, Velikova T. Exploring Gut–Brain Interaction Disorders: Mechanisms and Translational Therapies Crossing Neurology to Gastroenterology. GASTROENTEROLOGY INSIGHTS 2024; 15:555-573. [DOI: 10.3390/gastroent15030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
The bidirectional communication network between the gut and the brain, known as the gut–brain axis, plays a crucial role in health and disease. This review explores the mechanisms underlying gut–brain interaction disorders and highlights translational therapies bridging neurology and gastroenterology. Mechanisms encompass anatomical, endocrine, humoral, metabolic, and immune pathways, with the gut microbiota exerting profound influence. Clinical evidence links gut microbiota fluctuations to mood disorders, GI disruptions, and neurodevelopmental conditions, emphasizing the microbiome’s pivotal role in shaping brain–gut interactions. Pharmacological therapies such as amitriptyline and selective serotonin reuptake inhibitors modulate neurotransmitter activity, offering relief in functional gastrointestinal disorders like irritable bowel syndrome (IBS). Non-pharmacological interventions like cognitive–behavioral therapy and hypnotherapy address maladaptive thoughts and induce relaxation, alleviating gastrointestinal symptoms exacerbated by stress. Emerging therapies include gut microbiota modulation, dietary interventions, vagus nerve stimulation, and intestinal barrier modulation, offering novel approaches to manage neurological disorders via the gastrointestinal tract. Understanding and harnessing the gut–brain axis holds promise for personalized therapeutic strategies in neurogastroenterology.
Collapse
Affiliation(s)
- Georgi V. Vasilev
- Clinic of Neurology and Department of Emergency Medicine, UMHAT “Sv. Georgi”, Blvd. Peshtersko Shose 66, 4000 Plovdiv, Bulgaria
- Medical Faculty, Sofia University “St. Kliment Ohridski”, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Dimitrina Miteva
- Medical Faculty, Sofia University “St. Kliment Ohridski”, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
| | - Milena Gulinac
- Medical Faculty, Sofia University “St. Kliment Ohridski”, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of General and Clinical Pathology, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
| | - Lyubomir Chervenkov
- Department of Diagnostic Imaging, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
- Research Complex for Translational Neuroscience, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4002 Plovdiv, Bulgaria
| | - Meglena Kitanova
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University “St. Kliment Ohridski”, 1 Kozyak Str., 1407 Sofia, Bulgaria
| |
Collapse
|
3
|
Ding S, Li K, Han X, Lin W, Qin Y, Cao R, Ren Y. Long-term use of etomidate disrupts the intestinal homeostasis and nervous system in mice. Toxicology 2024; 504:153802. [PMID: 38604439 DOI: 10.1016/j.tox.2024.153802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
Etomidate (ETO) is used as an anesthetic in surgery, but it is being abused in some populations. The damage caused by long-term intake of ETO to intestinal and brain functions is not yet clear, and it remains to be determined whether the drug affects the central nervous system through the gut-brain axis. This study aimed to investigate the neurotoxic and gastrointestinal effects of ETO at doses of 1 mg/kg and 3 mg/kg in mice over 14 consecutive days. The results showed that long-term injection of ETO led to drug resistance in mice, affecting their innate preference for darkness and possibly inducing dependence on ETO. The levels of 5-hydroxytryptamine in the brain, serum, and colon decreased by 37%, 51%, and 42% respectively, while the levels of γ-aminobutyric acid reduced by 38%, 52%, and 41% respectively. H&E staining revealed that ETO reduced goblet cells in the colon and damaged the intestinal barrier. The expression of tight junction-related genes Claudin4 and ZO-1 was downregulated. The intestinal flora changed, the abundance of Akkermansia and Lactobacillus decreased by 33% and 14%, respectively, while Klebsiella increased by 18%. TUNEL results showed that high-dose ETO increased apoptotic cells in the brain. The expression of Claudin1 in the brain was downregulated. Untargeted metabolomics analysis of the colon and brain indicated that ETO caused abnormalities in glycerophospholipid metabolism. Abnormal lipid metabolism might lead to the production or accumulation of lipotoxic metabolites, causing central nervous system diseases. ETO induced changes in the intestinal flora and metabolism, further affecting the central nervous system through the gut-brain axis. The study unveiled the detrimental effects on the brain and gastrointestinal system resulting from long-term intake of ETO, which holds significant implications for comprehending the adverse impact of ETO abuse on human health.
Collapse
Affiliation(s)
- Siming Ding
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Kan Li
- National Anti-Drug Laboratory Guangdong Regional Center, Guangzhou 510230, PR China; Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, PR China
| | - Xing Han
- National Anti-Drug Laboratory Guangdong Regional Center, Guangzhou 510230, PR China; Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, PR China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yingjun Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Renjuan Cao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, PR China.
| |
Collapse
|