1
|
Han Y, Zhou Y, Pan J, Sun M, Yang J. MAN2B1 in immune system-related diseases, neurodegenerative disorders and cancers: functions beyond α-mannosidosis. Expert Rev Mol Med 2024; 27:e4. [PMID: 39628046 PMCID: PMC11707832 DOI: 10.1017/erm.2024.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 01/07/2025]
Abstract
Glycosylation modifications of proteins and glycan hydrolysis are critical for protein function in biological processes. Aberrations in glycosylation enzymes are linked to lysosomal storage disorders (LSDs), immune interactions, congenital disorders and tumour progression. Mannosidase alpha class 2B member 1 (MAN2B1) is a lysosomal hydrolase from the α-mannosidase family. Dysfunction of MAN2B1 has been implicated as causative factors in mannosidosis, a lysosomal storage disorder characterised by cognitive impairment, hearing loss and immune system and skeletal anomalies. Despite decades of research, its role in pathogenic infections, autoimmune conditions, cancers and neurodegenerative pathologies is highly ambiguous. Future studies are required to shed more light on the intricate functioning of MAN2B1. To this end, we review the biological functions, expression patterns, enzymatic roles and potential implications of MAN2B1 across various cell types and disease contexts. Additionally, the novel insights presented in this review may aid in understanding the role of MAN2B1 in immune cells, thereby paving the way for targeted therapeutic interventions in immune-related disorders.
Collapse
Affiliation(s)
- Yuwen Han
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou215163, China
| | - Yuanshuai Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou215163, China
| | - Jinlin Pan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou215163, China
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou215163, China
| | - Jiao Yang
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou 215153, China
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou 215153, China
| |
Collapse
|
2
|
Bullock G, Johnson GS, Mhlanga-Mutangadura T, Petesch SC, Thompson S, Goebbels S, Katz ML. Lysosomal storage disease associated with a CNP sequence variant in Dalmatian dogs. Gene X 2022; 830:146513. [PMID: 35447247 DOI: 10.1016/j.gene.2022.146513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022] Open
Abstract
A progressive neurological disorder was identified in purebred Dalmatian dogs. The disease is characterized by anxiety, pacing and circling, hypersensitivity, cognitive decline, sleep disturbance, loss of coordination, loss of control over urination and defecation, and visual impairment. Neurological signs first became apparent when the dogs were approximately 18 months of age and progressed slowly. Two affected littermates were euthanized at approximately 7 years, 5 months and 8 years, 2 months of age due to the severity of neurological impairment. The mother of the affected dogs and four other relatives exhibited milder, later-onset neurological signs. Pronounced accumulations of autofluorescent intracellular inclusions were found in cerebral cortex, cerebellum, optic nerve, and cardiac muscle of the affected dogs. These inclusions co-localized with immunolabeling of the lysosomal marker protein LAMP2 and bound antibodies to mitochondrial ATPase subunit c, indicating that the dogs suffered from a lysosomal storage disease with similarities to the neuronal ceroid lipofuscinoses. Ultrastructural analysis indicated that the storage bodies were surrounded by a single-layer membrane, but the storage granules were distinct from those reported for other lysosomal storage diseases. Whole genome sequences, generated with DNA from the two euthanized Dalmatians, both contained a rare, homozygous single-base deletion and reading-frame shift in CNP which encodes the enzyme CNPase (EC 3.1.4.37). The late-onset disease was exhibited by five of seven related Dalmatians that were heterozygous for the deletion allele and over 8 years of age, whereas none of 16 age-matched reference-allele homozygotes developed neurologic signs. No CNPase antigen could be detected with immunohistochemical labeling in tissues from the dogs with the earlier-onset disorder. Similar to the later-onset Dalmatians, autofluorescent storage granules were apparent in brain and cardiac tissue from transgenic mice that were nullizygous for Cnp. Based on the clinical signs, the histopathological, immunohistochemical, ultrastructural, and molecular-genetic findings, and the finding that nullizygous Cnp mice accumulate autofluorescent storage granules, we propose that the earlier-onset Dalmatian disorder is a novel lysosomal storage disease that results from a loss-of-function mutation in CNP and that shares features characteristic of the neuronal ceroid lipofuscinoses. That the later-onset disorder occurred only in dogs heterozygous for the CNP deletion variant suggests that this disorder is a result of the variant allele's presence.
Collapse
Affiliation(s)
- Garrett Bullock
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Gary S Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Tendai Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Scott C Petesch
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | | | - Sandra Goebbels
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
3
|
Yagound B, West AJ, Richardson MF, Selechnik D, Shine R, Rollins LA. Brain transcriptome analysis reveals gene expression differences associated with dispersal behaviour between range-front and range-core populations of invasive cane toads in Australia. Mol Ecol 2022; 31:1700-1715. [PMID: 35028988 PMCID: PMC9303232 DOI: 10.1111/mec.16347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 11/27/2022]
Abstract
Understanding the mechanisms allowing invasive species to adapt to novel environments is a challenge in invasion biology. Many invaders demonstrate rapid evolution of behavioural traits involved in range expansion such as locomotor activity, exploration and risk‐taking. However, the molecular mechanisms that underpin these changes are poorly understood. In 86 years, invasive cane toads (Rhinella marina) in Australia have drastically expanded their geographic range westward from coastal Queensland to Western Australia. During their range expansion, toads have undergone extensive phenotypic changes, particularly in behaviours that enhance the toads’ dispersal ability. Common‐garden experiments have shown that some changes in behavioural traits related to dispersal are heritable. At the molecular level, it is currently unknown whether these changes in dispersal‐related behaviour are underlain by small or large differences in gene expression, nor is known the biological function of genes showing differential expression. Here, we used RNA‐seq to gain a better understanding of the molecular mechanisms underlying dispersal‐related behavioural changes. We compared the brain transcriptomes of toads from the Hawai'ian source population, as well as three distinct populations from across the Australian invasive range. We found markedly different gene expression profiles between the source population and Australian toads. By contrast, toads from across the Australian invasive range had very similar transcriptomic profiles. Yet, key genes with functions putatively related to dispersal behaviour showed differential expression between populations located at each end of the invasive range. These genes could play an important role in the behavioural changes characteristic of range expansion in Australian cane toads.
Collapse
Affiliation(s)
- Boris Yagound
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Andrea J West
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Mark F Richardson
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,Deakin Genomics Centre, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Daniel Selechnik
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lee A Rollins
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
4
|
Favret JM, Weinstock NI, Feltri ML, Shin D. Pre-clinical Mouse Models of Neurodegenerative Lysosomal Storage Diseases. Front Mol Biosci 2020; 7:57. [PMID: 32351971 PMCID: PMC7174556 DOI: 10.3389/fmolb.2020.00057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
There are over 50 lysosomal hydrolase deficiencies, many of which cause neurodegeneration, cognitive decline and death. In recent years, a number of broad innovative therapies have been proposed and investigated for lysosomal storage diseases (LSDs), such as enzyme replacement, substrate reduction, pharmacologic chaperones, stem cell transplantation, and various forms of gene therapy. Murine models that accurately reflect the phenotypes observed in human LSDs are critical for the development, assessment and implementation of novel translational therapies. The goal of this review is to summarize the neurodegenerative murine LSD models available that recapitulate human disease, and the pre-clinical studies previously conducted. We also describe some limitations and difficulties in working with mouse models of neurodegenerative LSDs.
Collapse
Affiliation(s)
| | | | | | - Daesung Shin
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
5
|
Rísquez-Cuadro R, Matsumoto R, Ortega-Caballero F, Nanba E, Higaki K, García Fernández JM, Ortiz Mellet C. Pharmacological Chaperones for the Treatment of α-Mannosidosis. J Med Chem 2019; 62:5832-5843. [PMID: 31017416 DOI: 10.1021/acs.jmedchem.9b00153] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
α-Mannosidosis (AM) results from deficient lysosomal α-mannosidase (LAMAN) activity and subsequent substrate accumulation in the lysosome, leading to severe pathology. Many of the AM-causative mutations compromise enzyme folding and could be rescued with purpose-designed pharmacological chaperones (PCs). We found that PCs combining a LAMAN glycone-binding motif based on the 5 N,6 O-oxomethylidenemannojirimycin (OMJ) glycomimetic core and different aglycones, in either mono- or multivalent displays, elicit binding modes involving glycone and nonglycone enzyme regions that reinforce the protein folding and stabilization potential. Multivalent derivatives exhibited potent enzyme inhibition that generally prevailed over the chaperone effect. On the contrary, monovalent OMJ derivatives with LAMAN aglycone binding area-fitting substituents proved effective as activity enhancers for several mutant LAMAN forms in AM patient fibroblasts and/or transfected MAN2 B1-KO cells. This translated into a significant improvement in endosomal/lysosomal function, reverting not only the primary LAMAN substrate accumulation but also the additional downstream consequences such as cholesterol accumulation.
Collapse
Affiliation(s)
- Rocío Rísquez-Cuadro
- Department of Organic Chemistry, Faculty of Chemistry , University of Sevilla , C/ Profesor García González 1 , 41012 Sevilla , Spain
| | - Reimi Matsumoto
- Organization for Research Initiative and Promotion , Tottori University , 86 Nishi-cho , Yonago 683-8503 , Japan
| | - Fernando Ortega-Caballero
- Department of Organic Chemistry, Faculty of Chemistry , University of Sevilla , C/ Profesor García González 1 , 41012 Sevilla , Spain
| | - Eiji Nanba
- Organization for Research Initiative and Promotion , Tottori University , 86 Nishi-cho , Yonago 683-8503 , Japan
| | - Katsumi Higaki
- Organization for Research Initiative and Promotion , Tottori University , 86 Nishi-cho , Yonago 683-8503 , Japan
| | - José Manuel García Fernández
- Instituto de Investigaciones Químicas (IIQ) , CSIC-Universidad de Sevilla , Avda. Américo Vespucio 49, Isla de la Cartuja , 41092 Sevilla , Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry , University of Sevilla , C/ Profesor García González 1 , 41012 Sevilla , Spain
| |
Collapse
|
6
|
Kolicheski A, Johnson GS, Villani NA, O'Brien DP, Mhlanga-Mutangadura T, Wenger DA, Mikoloski K, Eagleson JS, Taylor JF, Schnabel RD, Katz ML. GM2 Gangliosidosis in Shiba Inu Dogs with an In-Frame Deletion in HEXB. J Vet Intern Med 2017; 31:1520-1526. [PMID: 28833537 PMCID: PMC5598891 DOI: 10.1111/jvim.14794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/08/2017] [Accepted: 06/27/2017] [Indexed: 11/28/2022] Open
Abstract
Consistent with a tentative diagnosis of neuronal ceroid lipofuscinosis (NCL), autofluorescent cytoplasmic storage bodies were found in neurons from the brains of 2 related Shiba Inu dogs with a young‐adult onset, progressive neurodegenerative disease. Unexpectedly, no potentially causal NCL‐related variants were identified in a whole‐genome sequence generated with DNA from 1 of the affected dogs. Instead, the whole‐genome sequence contained a homozygous 3 base pair (bp) deletion in a coding region of HEXB. The other affected dog also was homozygous for this 3‐bp deletion. Mutations in the human HEXB ortholog cause Sandhoff disease, a type of GM2 gangliosidosis. Thin‐layer chromatography confirmed that GM2 ganglioside had accumulated in an affected Shiba Inu brain. Enzymatic analysis confirmed that the GM2 gangliosidosis resulted from a deficiency in the HEXB encoded protein and not from a deficiency in products from HEXA or GM2A, which are known alternative causes of GM2 gangliosidosis. We conclude that the homozygous 3‐bp deletion in HEXB is the likely cause of the Shiba Inu neurodegenerative disease and that whole‐genome sequencing can lead to the early identification of potentially disease‐causing DNA variants thereby refocusing subsequent diagnostic analyses toward confirming or refuting candidate variant causality.
Collapse
Affiliation(s)
- A Kolicheski
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - G S Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - N A Villani
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - D P O'Brien
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO
| | | | - D A Wenger
- Department of Neurology, Jefferson Medical College, Philadelphia, PA
| | - K Mikoloski
- Pittsburgh Veterinary Specialty and Emergency Center, Pittsburgh, PA
| | - J S Eagleson
- Veterinary Specialty and Emergency Center, Blue Pearl Veterinary Partners, Levittown, PA
| | - J F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO
| | - R D Schnabel
- Division of Animal Sciences and Informatics Institute, University of Missouri, Columbia, MO
| | - M L Katz
- Mason Eye Institute, University of Missouri, Columbia, MO
| |
Collapse
|
7
|
Stroobants S, Damme M, Van der Jeugd A, Vermaercke B, Andersson C, Fogh J, Saftig P, Blanz J, D'Hooge R. Long-term enzyme replacement therapy improves neurocognitive functioning and hippocampal synaptic plasticity in immune-tolerant alpha-mannosidosis mice. Neurobiol Dis 2017; 106:255-268. [PMID: 28720484 DOI: 10.1016/j.nbd.2017.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/14/2017] [Indexed: 01/22/2023] Open
Abstract
Alpha-mannosidosis is a glycoproteinosis caused by deficiency of lysosomal acid alpha-mannosidase (LAMAN), which markedly affects neurons of the central nervous system (CNS), and causes pathognomonic intellectual dysfunction in the clinical condition. Cognitive improvement consequently remains a major therapeutic objective in research on this devastating genetic error. Immune-tolerant LAMAN knockout mice were developed to evaluate the effects of enzyme replacement therapy (ERT) by prolonged administration of recombinant human enzyme. Biochemical evidence suggested that hippocampus may be one of the brain structures that benefits most from long-term ERT. In the present functional study, ERT was initiated in 2-month-old immune-tolerant alpha-mannosidosis mice and continued for 9months. During the course of treatment, mice were trained in the Morris water maze task to assess spatial-cognitive performance, which was related to synaptic plasticity recordings and hippocampal histopathology. Long-term ERT reduced primary substrate storage and neuroinflammation in hippocampus, and improved spatial learning after mid-term (10weeks+) and long-term (30weeks+) treatment. Long-term treatment substantially improved the spatial-cognitive abilities of alpha-mannosidosis mice, whereas the effects of mid-term treatment were more modest. Detailed analyses of spatial memory and spatial-cognitive performance indicated that even prolonged ERT did not restore higher cognitive abilities to the level of healthy mice. However, it did demonstrate marked therapeutic effects that coincided with increased synaptic connectivity, reflected by improvements in hippocampal CA3-CA1 long-term potentiation (LTP), expression of postsynaptic marker PSD-95 as well as postsynaptic density morphology. These experiments indicate that long-term ERT may hold promise, not only for the somatic defects of alpha-mannosidosis, but also to alleviate cognitive impairments of the disorder.
Collapse
Affiliation(s)
- Stijn Stroobants
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| | - Markus Damme
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| | - Ann Van der Jeugd
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| | - Ben Vermaercke
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| | | | - Jens Fogh
- Zymenex A/S, Roskildevej 12C, 3400 Hillerød, Denmark.
| | - Paul Saftig
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| | - Judith Blanz
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| |
Collapse
|
8
|
Wolf H, Damme M, Stroobants S, D'Hooge R, Beck HC, Hermans-Borgmeyer I, Lüllmann-Rauch R, Dierks T, Lübke T. A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease. Dis Model Mech 2016; 9:1015-28. [PMID: 27491075 PMCID: PMC5047687 DOI: 10.1242/dmm.025122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
Fucosidosis is a rare lysosomal storage disorder caused by the inherited deficiency of the lysosomal hydrolase α-L-fucosidase, which leads to an impaired degradation of fucosylated glycoconjugates. Here, we report the generation of a fucosidosis mouse model, in which the gene for lysosomal α-L-fucosidase (Fuca1) was disrupted by gene targeting. Homozygous knockout mice completely lack α-L-fucosidase activity in all tested organs leading to highly elevated amounts of the core-fucosylated glycoasparagine Fuc(α1,6)-GlcNAc(β1-N)-Asn and, to a lesser extent, other fucosylated glycoasparagines, which all were also partially excreted in urine. Lysosomal storage pathology was observed in many visceral organs, such as in the liver, kidney, spleen and bladder, as well as in the central nervous system (CNS). On the cellular level, storage was characterized by membrane-limited cytoplasmic vacuoles primarily containing water-soluble storage material. In the CNS, cellular alterations included enlargement of the lysosomal compartment in various cell types, accumulation of secondary storage material and neuroinflammation, as well as a progressive loss of Purkinje cells combined with astrogliosis leading to psychomotor and memory deficits. Our results demonstrate that this new fucosidosis mouse model resembles the human disease and thus will help to unravel underlying pathological processes. Moreover, this model could be utilized to establish diagnostic and therapeutic strategies for fucosidosis.
Collapse
Affiliation(s)
- Heike Wolf
- Biochemistry I, Department of Chemistry, Bielefeld University, Bielefeld D-33615, Germany
| | - Markus Damme
- Biochemical Institute, University of Kiel, Kiel D-24098, Germany
| | - Stijn Stroobants
- Laboratory of Biological Psychology, University of Leuven, Leuven B-3000, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Leuven B-3000, Belgium
| | - Hans Christian Beck
- Department of Biochemistry and Pharmacology, Centre for Clinical Proteomics, Odense University Hospital, Odense DK-5000, Denmark
| | | | | | - Thomas Dierks
- Biochemistry I, Department of Chemistry, Bielefeld University, Bielefeld D-33615, Germany
| | - Torben Lübke
- Biochemistry I, Department of Chemistry, Bielefeld University, Bielefeld D-33615, Germany
| |
Collapse
|
9
|
Kumar M, Duda JT, Yoon SY, Bagel J, O'Donnell P, Vite C, Pickup S, Gee JC, Wolfe JH, Poptani H. Diffusion Tensor Imaging for Assessing Brain Gray and White Matter Abnormalities in a Feline Model of α-Mannosidosis. J Neuropathol Exp Neurol 2016; 75:35-43. [PMID: 26671987 DOI: 10.1093/jnen/nlv007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
α-Mannosidosis (AMD) is an autosomal recessively inherited lysosomal storage disorder affecting brain function and structure. We performed ex vivo and in vivo diffusion tensor imaging (DTI) on the brains of AMD-affected cats to assess gray and white matter abnormalities. A multi-atlas approach was used to generate a brain template to process the ex vivo DTI data. The probabilistic label method was used to measure fractional anisotropy (FA), mean diffusivity, axial diffusivity, and radial diffusivity values from gray and white matter regions from ex vivo DTI. Regional analysis from various regions of the gray matter (frontal cortex, cingulate gyrus, caudate nucleus, hippocampus, thalamus, and occipital cortex), and white matter (corpus callosum, corticospinal tract, cerebral peduncle, external and internal capsule) was also performed on both ex vivo and in vivo DTI. Ex vivo DTI revealed significantly reduced FA from both gray and white matter regions in AMD-affected cats compared to controls. Significantly reduced FA was also observed from in vivo DTI of AMD-affected cats compared to controls, with lower FA values observed in all white matter regions. We also observed significantly increased axial and radial diffusivity values in various gray and white matter regions in AMD cats from both ex vivo and in vivo DTI data. Imaging findings were correlated with histopathologic analyses suggesting that DTI studies can further aid in the characterization of AMD by assessing the microstructural abnormalities in both white and gray matter.
Collapse
|
10
|
Damme M, Stroobants S, Lüdemann M, Rothaug M, Lüllmann-Rauch R, Beck HC, Ericsson A, Andersson C, Fogh J, D'Hooge R, Saftig P, Blanz J. Chronic enzyme replacement therapy ameliorates neuropathology in alpha-mannosidosis mice. Ann Clin Transl Neurol 2015; 2:987-1001. [PMID: 26817023 PMCID: PMC4693626 DOI: 10.1002/acn3.245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE The lysosomal storage disease alpha-mannosidosis is caused by the deficiency of the lysosomal acid hydrolase alpha-mannosidase (LAMAN) leading to lysosomal accumulation of neutral mannose-linked oligosaccharides throughout the body, including the brain. Clinical findings in alpha-mannosidosis include skeletal malformations, intellectual disabilities and hearing impairment. To date, no curative treatment is available. We previously developed a beneficial enzyme replacement therapy (ERT) regimen for alpha-mannosidase knockout mice, a valid mouse model for the human disease. However, humoral immune responses against the injected recombinant human alpha-mannosidase (rhLAMAN) precluded long-term studies and chronic treatment. METHODS Here, we describe the generation of an immune-tolerant alpha-mannosidosis mouse model that allowed chronic injection of rhLAMAN by transgenic expression of a catalytically inactive variant of human LAMAN in the knockout background. RESULTS Chronic ERT of rhLAMAN revealed pronounced effects on primary substrate storage throughout the brain, normalization of lysosomal enzyme activities and morphology as well as a decrease in microglia activation. The positive effect of long-term ERT on neuronal lysosomal function was reflected by an improvement of cognitive deficits and exploratory activity. in vivo and in vitro uptake measurements indicate rapid clearance of rhLAMAN from circulation and a broad uptake into different cell types of the nervous system. INTERPRETATION Our data contribute to the understanding of neurological disorders treatment by demonstrating that lysosomal enzymes such as rhLAMAN can penetrate into the brain and is able to ameliorate neuropathology.
Collapse
Affiliation(s)
- Markus Damme
- Biochemical Institute University of Kiel D-24098 Kiel Germany
| | - Stijn Stroobants
- Laboratory of Biological Psychology University of Leuven B-3000 Leuven Belgium
| | - Meike Lüdemann
- Biochemical Institute University of Kiel D-24098 Kiel Germany
| | | | | | - Hans Christian Beck
- Department of Biochemistry and Pharmacology Centre for Clinical Proteomics Odense University Hospital Sdr Boulevard 29 DK-5000 Odense C Denmark
| | | | | | - Jens Fogh
- Zymenex A/S Roskildevej 12C 3400 Hillerød Denmark
| | - Rudi D'Hooge
- Laboratory of Biological Psychology University of Leuven B-3000 Leuven Belgium
| | - Paul Saftig
- Biochemical Institute University of Kiel D-24098 Kiel Germany
| | - Judith Blanz
- Biochemical Institute University of Kiel D-24098 Kiel Germany
| |
Collapse
|
11
|
Fast urinary screening of oligosaccharidoses by MALDI-TOF/TOF mass spectrometry. Orphanet J Rare Dis 2014; 9:19. [PMID: 24502792 PMCID: PMC3922009 DOI: 10.1186/1750-1172-9-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/14/2014] [Indexed: 01/05/2023] Open
Abstract
Background Oligosaccharidoses, which belong to the lysosomal storage diseases, are inherited metabolic disorders due to the absence or the loss of function of one of the enzymes involved in the catabolic pathway of glycoproteins and indirectly of glycosphingolipids. This enzymatic deficiency typically results in the abnormal accumulation of uncompletely degraded oligosaccharides in the urine. Since the clinical features of many of these disorders are not specific for a single enzyme deficiency, unambiguous screening is critical to limit the number of costly enzyme assays which otherwise must be performed. Methods Here we provide evidence for the advantages of using a MALDI-TOF/TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometric (MS) method for screening oligosaccharidoses. Urine samples from previously diagnosed patients or from unaffected subjects were randomly divided into a training set and a blind testing set. Samples were directly analyzed without prior treatment. Results The characteristic MS and MS/MS molecular profiles obtained allowed us to identify fucosidosis, aspartylglucosaminuria, GM1 gangliosidosis, Sandhoff disease, α-mannosidosis, sialidosis and mucolipidoses type II and III. Conclusions This method, which is easily run in less than 30 minutes, is performed in a single step, and is sensitive and specific. Invaluable for clinical chemistry purposes this MALDI-TOF/TOF mass spectrometry procedure is semi-automatizable and suitable for the urinary screening of oligosacharidoses.
Collapse
|
12
|
Abstract
Neurological dysfunction is common in humans and animals with lysosomal storage diseases. β-Mannosidosis, an autosomal recessive inherited disorder of glycoprotein catabolism caused by deficiency of the lysosomal enzyme β-mannosidase, is characterized by intracellular accumulation of small oligosaccharides in selected cell types. In ruminants, clinical manifestation is severe, and neuropathology includes extensive intracellular vacuolation and dysmyelination. In human cases of β-mannosidosis, the clinical symptoms, including intellectual disability, are variable and can be relatively mild. A β-mannosidosis knockout mouse was previously characterized and showed normal growth, appearance, and lifespan. Neuropathology between 1 and 9 months of age included selective, variable neuronal vacuolation with no hypomyelination. This study characterized distribution of brain pathology in older mutant mice, investigating the effects of two strain backgrounds. Morphological analysis indicated a severe consistent pattern of neuronal vacuolation and disintegrative degeneration in all five 129X1/SvJ mice. However, the mice with a mixed genetic background showed substantial variability in the severity of pathology. In the severely affected animals, neuronal vacuolation was prominent in specific layers of piriform area, retrosplenial area, anterior cingulate area, selected regions of isocortex, and in hippocampus CA3. Silver degeneration reaction product was prominent in regions including specific cortical layers and cerebellar molecular layer. The very consistent pattern of neuropathology suggests metabolic differences among neuronal populations that are not yet understood and will serve as a basis for future comparison with human neuropathological analysis. The variation in severity of pathology in different mouse strains implicates genetic modifiers in the variable phenotypic expression in humans.
Collapse
|
13
|
Beck M, Olsen KJ, Wraith JE, Zeman J, Michalski JC, Saftig P, Fogh J, Malm D. Natural history of alpha mannosidosis a longitudinal study. Orphanet J Rare Dis 2013; 8:88. [PMID: 23786919 PMCID: PMC3691585 DOI: 10.1186/1750-1172-8-88] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 06/13/2013] [Indexed: 12/18/2022] Open
Abstract
Background Alpha-Mannosidosis is a rare lysosomal storage disorder, caused by the deficiency of the enzyme alpha-Mannosidase. Clinically it is characterized by hearing impairment, skeletal and neurological abnormalities and mental retardation. In order to characterize the clinical features and disease progression of patients affected by alpha-Mannosidosis, a survey study was conducted. 43 patients from 4 European countries participated in this longitudinal study. Age range of the participants was 3 to 42 years. For each patient a medical history, complete physical and neurological examination, joint range of motion and assessment of physical endurance and of lung function were completed. In addition, serum and urinary oligosaccharide levels were analysed. Methods In this multicenter longitudinal study clinical data of 43 alpha-Mannosidosis patients were collected. In addition to objective clinical measurements biochemical assays were performed. Results Data analysis revealed a wide spectrum of clinical presentation regarding the severity and disease progression. Most clinical abnormalities were observed in the musculoskeletal and neurological system. All patients showed mental retardation and hearing loss from early childhood. An impairment in physical endurance was revealed by the 6-minute walk and 3-minute stair stair climb tests. There was only slight progression of a few clinical findings: Psychiatric troubles in both groups essentially, and respiratory dysfunction under 18 years. The serum and urinary oligosaccharide levels were increased in all affected individuals and correlated well with the 6-minute walk and 3-minute stair climb test results. Conclusions This study confirms that alpha-Mannosidosis is a very heterogeneous disorder regarding both, disease severity and progression. As it has been shown that Mannosidosis patients are able to perform lung function tests and the 6MWT and stair-climb test, these clinical parameters apparently can be used as clinical endpoints for clinical trials. Oligosaccharide levels appeared correlated with functional testing and may serve as biomarkers of disease severity, progression and response to treatment. Trial registration ClinicalTrials.gov Identifier = NCT00498420 and EuropeanCommission FP VI contract LHSM-CT-2006-018692.
Collapse
Affiliation(s)
- Michael Beck
- Center for Pediatric and Adolescent Medicine, University Medical Center, Langenbeckstraße 1, 55131 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Increased gait variability in mice with small cerebellar cortex lesions and normal rotarod performance. Behav Brain Res 2013; 241:32-7. [DOI: 10.1016/j.bbr.2012.11.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/22/2012] [Accepted: 11/24/2012] [Indexed: 02/05/2023]
|
15
|
Kollmann K, Damme M, Markmann S, Morelle W, Schweizer M, Hermans-Borgmeyer I, Röchert AK, Pohl S, Lübke T, Michalski JC, Käkelä R, Walkley SU, Braulke T. Lysosomal dysfunction causes neurodegeneration in mucolipidosis II 'knock-in' mice. ACTA ACUST UNITED AC 2012; 135:2661-75. [PMID: 22961545 DOI: 10.1093/brain/aws209] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Mucolipidosis II is a neurometabolic lysosomal trafficking disorder of infancy caused by loss of mannose 6-phosphate targeting signals on lysosomal proteins, leading to lysosomal dysfunction and accumulation of non-degraded material. However, the identity of storage material and mechanisms of neurodegeneration in mucolipidosis II are unknown. We have generated 'knock-in' mice with a common mucolipidosis II patient mutation that show growth retardation, progressive brain atrophy, skeletal abnormalities, elevated lysosomal enzyme activities in serum, lysosomal storage in fibroblasts and brain and premature death, closely mimicking the mucolipidosis II disease in humans. The examination of affected mouse brains at different ages by immunohistochemistry, ultrastructural analysis, immunoblotting and mass spectrometric analyses of glycans and anionic lipids revealed that the expression and proteolytic processing of distinct lysosomal proteins such as α-l-fucosidase, β-hexosaminidase, α-mannosidase or Niemann-Pick C2 protein are more significantly impacted by the loss of mannose 6-phosphate residues than enzymes reaching lysosomes independently of this targeting mechanism. As a consequence, fucosylated N-glycans, GM2 and GM3 gangliosides, cholesterol and bis(monoacylglycero)phosphate accumulate progressively in the brain of mucolipidosis II mice. Prominent astrogliosis and the accumulation of organelles and storage material in focally swollen axons were observed in the cerebellum and were accompanied by a loss of Purkinje cells. Moreover, an increased neuronal level of the microtubule-associated protein 1 light chain 3 and the formation of p62-positive neuronal aggregates indicate an impairment of constitutive autophagy in the mucolipidosis II brain. Our findings demonstrate the essential role of mannose 6-phosphate for selected lysosomal proteins to maintain the capability for degradation of sequestered components in lysosomes and autophagolysosomes and prevent neurodegeneration. These lysosomal proteins might be a potential target for a valid therapeutic approach for mucolipidosis II disease.
Collapse
Affiliation(s)
- K Kollmann
- Department of Biochemistry, Children’s Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Arylsulfatase G inactivation causes loss of heparan sulfate 3-O-sulfatase activity and mucopolysaccharidosis in mice. Proc Natl Acad Sci U S A 2012; 109:10310-5. [PMID: 22689975 DOI: 10.1073/pnas.1202071109] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deficiency of glycosaminoglycan (GAG) degradation causes a subclass of lysosomal storage disorders called mucopolysaccharidoses (MPSs), many of which present with severe neuropathology. Critical steps in the degradation of the GAG heparan sulfate remain enigmatic. Here we show that the lysosomal arylsulfatase G (ARSG) is the long-sought glucosamine-3-O-sulfatase required to complete the degradation of heparan sulfate. Arsg-deficient mice accumulate heparan sulfate in visceral organs and the central nervous system and develop neuronal cell death and behavioral deficits. This accumulated heparan sulfate exhibits unique nonreducing end structures with terminal N-sulfoglucosamine-3-O-sulfate residues, allowing diagnosis of the disorder. Recombinant human ARSG is able to cleave 3-O-sulfate groups from these residues as well as from an authentic 3-O-sulfated N-sulfoglucosamine standard. Our results demonstrate the key role of ARSG in heparan sulfate degradation and strongly suggest that ARSG deficiency represents a unique, as yet unknown form of MPS, which we term MPS IIIE.
Collapse
|
17
|
Thelen M, Daμμe M, Schweizer M, Hagel C, Wong AM, Cooper JD, Braulke T, Galliciotti G. Disruption of the autophagy-lysosome pathway is involved in neuropathology of the nclf mouse model of neuronal ceroid lipofuscinosis. PLoS One 2012; 7:e35493. [PMID: 22536393 PMCID: PMC3335005 DOI: 10.1371/journal.pone.0035493] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/16/2012] [Indexed: 11/18/2022] Open
Abstract
Variant late-infantile neuronal ceroid lipofuscinosis, a fatal lysosomal storage disorder accompanied by regional atrophy and pronounced neuron loss in the brain, is caused by mutations in the CLN6 gene. CLN6 is a non-glycosylated endoplasmic reticulum (ER)-resident membrane protein of unknown function. To investigate mechanisms contributing to neurodegeneration in CLN6 disease we examined the nclf mouse, a naturally occurring model of the human CLN6 disease. Prominent autofluorescent and electron-dense lysosomal storage material was found in cerebellar Purkinje cells, thalamus, hippocampus, olfactory bulb and in cortical layer II to V. Another prominent early feature of nclf pathogenesis was the localized astrocytosis that was evident in many brain regions and the more widespread microgliosis. Expression analysis of mutant Cln6 found in nclf mice demonstrated synthesis of a truncated protein with a reduced half-life. Whereas the rapid degradation of the mutant Cln6 protein can be inhibited by proteasomal inhibitors, there was no evidence for ER stress or activation of the unfolded protein response in various brain areas during postnatal development. Age-dependent increases in LC3-II, ubiquitinated proteins, and neuronal p62-positive aggregates were observed, indicating a disruption of the autophagy-lysosome degradation pathway of proteins in brains of nclf mice, most likely due to defective fusion between autophagosomes and lysosomes. These data suggest that proteasomal degradation of mutant Cln6 is sufficient to prevent the accumulation of misfolded Cln6 protein, whereas lysosomal dysfunction impairs constitutive autophagy promoting neurodegeneration.
Collapse
Affiliation(s)
- Melanie Thelen
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Daμμe
- Department of Biochemistry 1, University Bielefeld, Bielefeld, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrew M.S. Wong
- Department of Neuroscience and Centre for the Cellular Basis of Behaviour, MRC Centre for Neurodegeneration Research, Kinǵs College London, Institute of Psychiatry, London, United Kingdom
| | - Jonathan D. Cooper
- Department of Neuroscience and Centre for the Cellular Basis of Behaviour, MRC Centre for Neurodegeneration Research, Kinǵs College London, Institute of Psychiatry, London, United Kingdom
| | - Thomas Braulke
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giovanna Galliciotti
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
18
|
Dixit SS, Jadot M, Sohar I, Sleat DE, Stock AM, Lobel P. Loss of Niemann-Pick C1 or C2 protein results in similar biochemical changes suggesting that these proteins function in a common lysosomal pathway. PLoS One 2011; 6:e23677. [PMID: 21887293 PMCID: PMC3161064 DOI: 10.1371/journal.pone.0023677] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 07/22/2011] [Indexed: 11/19/2022] Open
Abstract
Niemann-Pick Type C (NPC) disease is a lysosomal storage disorder characterized by accumulation of unesterified cholesterol and other lipids in the endolysosomal system. NPC disease results from a defect in either of two distinct cholesterol-binding proteins: a transmembrane protein, NPC1, and a small soluble protein, NPC2. NPC1 and NPC2 are thought to function closely in the export of lysosomal cholesterol with both proteins binding cholesterol in vitro but they may have unrelated lysosomal roles. To investigate this possibility, we compared biochemical consequences of the loss of either protein. Analyses of lysosome-enriched subcellular fractions from brain and liver revealed similar decreases in buoyant densities of lysosomes from NPC1 or NPC2 deficient mice compared to controls. The subcellular distribution of both proteins was similar and paralleled a lysosomal marker. In liver, absence of either NPC1 or NPC2 resulted in similar alterations in the carbohydrate processing of the lysosomal protease, tripeptidyl peptidase I. These results highlight biochemical alterations in the lysosomal system of the NPC-mutant mice that appear secondary to lipid storage. In addition, the similarity in biochemical phenotypes resulting from either NPC1 or NPC2 deficiency supports models in which the function of these two proteins within lysosomes are linked closely.
Collapse
Affiliation(s)
- Sayali S. Dixit
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, United States of America
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School (UMDNJ–RWJMS), Piscataway, New Jersey, United States of America
- Department of Biochemistry, UMDNJ–RWJMS, Piscataway, New Jersey, United States of America
| | - Michel Jadot
- Laboratoire de Chimie Physiologique, Namur Research Institute for Life Sciences and Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
| | - Istvan Sohar
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, United States of America
| | - David E. Sleat
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, United States of America
- Department of Pharmacology, UMDNJ–RWJMS, Piscataway, New Jersey, United States of America
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, United States of America
- Department of Biochemistry, UMDNJ–RWJMS, Piscataway, New Jersey, United States of America
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, United States of America
- Department of Pharmacology, UMDNJ–RWJMS, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|