1
|
Javelle F, Dao G, Ringleb M, Pulverer W, Bloch W. Exploring the association between serotonin transporter promoter region methylation levels and depressive symptoms: a systematic review and multi-level meta-analysis. Transl Psychiatry 2025; 15:161. [PMID: 40319044 PMCID: PMC12049537 DOI: 10.1038/s41398-025-03356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 05/07/2025] Open
Abstract
Depressive disorders result from complex interactions among genetic, epigenetic, and environmental factors. DNA methylation, a key epigenetic mechanism, is crucial in understanding depressive symptoms development. The serotonin transporter gene (5-HTT) and its polymorphisms, like 5-HTTLPR, have been extensively studied in relation to depression, yet conflicting findings regarding the association between 5-HTT promoter methylation and depressive symptoms persist, largely due to methodological differences. Thus, this systematic review and meta-analysis aims to assess (1) 5-HTT promoter methylation levels between depressed and non-depressed conditions and (2) the association between 5-HTT methylation and depressive symptoms severity. We searched PubMed, Google Scholar, and Web of Science from inception to January 15th, 2025 (PROSPERO: CRD42023355414) and performed two independent multi-level meta-analyses to answer our aims. Twenty-four trials were included in the systematic review. All reported effects carried potential for bias. The meta-analysis for depression occurrence (12 studies - 2028 subjects - 127 effects) indicated no significant effect (Hedges'g = 0.06) with moderate within- and low between-study heterogeneity. The depression severity analysis (14 studies - 2296 subjects - 116 effects) revealed a null effect size (Fisher's Z = 0.05), with no within- and moderate between-study heterogeneity. Asymmetry was detected for both meta-analyses. Moderator analyses demonstrated no significant effects of depression severity, methylation techniques, single-CpG sites, cell types assessed, age, and female percentage. This comprehensive review provides insights into the intricate interplay between 5-HTT promoter methylation and depressive symptoms. Furthermore, it offers well-considered recommendations for future research endeavors and delineates guidelines for reporting methylation research.
Collapse
Affiliation(s)
- F Javelle
- NeuroPsychoImmunology research unit, Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany.
| | - G Dao
- NeuroPsychoImmunology research unit, Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
- University of Cologne, Cologne, Germany
| | - M Ringleb
- NeuroPsychoImmunology research unit, Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
- Department of Movement Science, University of Münster, Münster, Germany
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
| | - W Pulverer
- Austrian Institute of Technology, Vienna, Austria
| | - W Bloch
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
2
|
González Molina LA, Dolga AM, Rots MG, Sarno F. The Promise of Epigenetic Editing for Treating Brain Disorders. Subcell Biochem 2025; 108:111-190. [PMID: 39820862 DOI: 10.1007/978-3-031-75980-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Brain disorders, especially neurodegenerative diseases, affect millions of people worldwide. There is no causal treatment available; therefore, there is an unmet clinical need for finding therapeutic options for these diseases. Epigenetic research has resulted in identification of various genomic loci with differential disease-specific epigenetic modifications, mainly DNA methylation. These biomarkers, although not yet translated into clinically approved options, offer therapeutic targets as epigenetic modifications are reversible. Indeed, clinical trials are designed to inhibit epigenetic writers, erasers, or readers using epigenetic drugs to interfere with epigenetic dysregulation in brain disorders. However, since such drugs elicit genome-wide effects and potentially cause toxicity, the recent developments in the field of epigenetic editing are gaining widespread attention. In this review, we provide examples of epigenetic biomarkers and epi-drugs, while describing efforts in the field of epigenetic editing, to eventually make a difference for the currently incurable brain disorders.
Collapse
Affiliation(s)
- Luis A González Molina
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Marianne G Rots
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Federica Sarno
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
The associations between DNA methylation and depression: A systematic review and meta-analysis. J Affect Disord 2023; 327:439-450. [PMID: 36717033 DOI: 10.1016/j.jad.2023.01.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Growing evidence suggests that epigenetic modification is vital in biological processes of depression. Findings from studies exploring the associations between DNA methylation and depression have been inconsistent. METHODS A systematical search of EMBASE, PubMed, Web of Science, and PsycINFO databases was conducted to include studies focusing on the associations between DNA methylation and depression (up to November 1st 2021) according to PRISMA guidelines with registration in PROSPERO (CRD42021288664). RESULTS A total of 47 studies met inclusion criteria and 31 studies were included in the meta-analysis. This meta-analysis found that genes hypermethylation, including BDNF (OR: 1.15, 95%CI: 1.01-1.32, I2 = 90 %), and NR3C1 (OR: 1.43, 95%CI: 1.09-1.87, I2 = 88 %) was associated with increased risk of depression. Significant association of SLC6A4 hypermethylation with depression was only found in the subgroup of using original data (OR: 1.09, 95%CI: 1.01-1.19, I2 = 52 %). BDNF hypermethylation could increase the risk of depression only in the Asian population (OR: 1.18, 95%CI: 1.01-1.40, I2 = 91 %), and significant associations of NR3C1 hypermethylation with depression were found in the group for depressive symptoms (OR: 1.34, 95%CI: 1.08-1.67, I2 = 85 %), but not for depressive disorder (OR: 1.89, 95%CI: 0.54-6.55, I2 = 94 %). LIMITATIONS More studies are needed to explore the factors that might influence the estimates owing to the contextual heterogeneity of the pooling of included studies. CONCLUSIONS It is noted that DNA hypermethylation, namely BDNF and NR3C1, is associated with increased risk of depression. The findings in this study could provide some material evidence for preventing and diagnosing of depression.
Collapse
|
4
|
Nadeem, Usman S, Imad R, Nisar U, Khan I, Abbas G. Pre-weaning fluoxetine exposure caused anti-depressant like behavior at adulthood via perturbing tryptophan metabolism in rats. Metab Brain Dis 2022; 37:1415-1422. [PMID: 35303245 DOI: 10.1007/s11011-022-00951-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
The perinatal depression exposes the child to antidepressants during vulnerable window of development, which can chronically impact the mental wellbeing of new born. Active pharmaceuticals are not tested for this long term neurobehavioral aspect of toxicity during drug development process. Keeping this in view, the current study was designed to study the effect of pre-weaning fluoxetine exposure on depression-like behavior of the offspring upon attaining adulthood using FST (Forced swim test). Additionally, the brain tryptophan, 5-HT (5-hydroxytryptamine) and its metabolite 5-HIAA (5-hydroxyindoleacetic acid) levels were quantified using Enzyme linked Immunosorbent Assay (ELISA), while expression of SERT (serotonin receptor), 5-HT1A receptor, TPH (tryptophan hydroxylase) genes were monitored using qPCR. Our data showed that pre-weaning fluoxetine (10, 50 or 100 mg/kg) exposure decreased depression-like behavior. The 5-HT and 5-HIAA levels showed declining trend. However, the 5-HT synthetic precursor i.e. tryptophan levels were found to be significantly elevated in both brain and plasma as compared to control rats. The gene expression study did not reveal any significant alterations as compared to control. In conclusion, the present study demonstrate that pre-weaning fluoxetine exposure decreased depression-like behavior upon adulthood via perturbing tryptophan metabolism.
Collapse
Affiliation(s)
- Nadeem
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
- Institute of Pharmacy, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, Pakistan
| | - Shumaila Usman
- Department of Research, Ziauddin University, Karachi, Pakistan
| | - Rehan Imad
- Department of Research, Ziauddin University, Karachi, Pakistan
| | - Uzair Nisar
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine & Drug Research, ICCBS, University of Karachi, Karachi, Pakistan
| | - Ghulam Abbas
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan.
| |
Collapse
|
5
|
Manu DM, Mwinyi J, Schiöth HB. Challenges in Analyzing Functional Epigenetic Data in Perspective of Adolescent Psychiatric Health. Int J Mol Sci 2022; 23:5856. [PMID: 35628666 PMCID: PMC9147258 DOI: 10.3390/ijms23105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
The formative period of adolescence plays a crucial role in the development of skills and abilities for adulthood. Adolescents who are affected by mental health conditions are at risk of suicide and social and academic impairments. Gene-environment complementary contributions to the molecular mechanisms involved in psychiatric disorders have emphasized the need to analyze epigenetic marks such as DNA methylation (DNAm) and non-coding RNAs. However, the large and diverse bioinformatic and statistical methods, referring to the confounders of the statistical models, application of multiple-testing adjustment methods, questions regarding the correlation of DNAm across tissues, and sex-dependent differences in results, have raised challenges regarding the interpretation of the results. Based on the example of generalized anxiety disorder (GAD) and depressive disorder (MDD), we shed light on the current knowledge and usage of methodological tools in analyzing epigenetics. Statistical robustness is an essential prerequisite for a better understanding and interpretation of epigenetic modifications and helps to find novel targets for personalized therapeutics in psychiatric diseases.
Collapse
Affiliation(s)
- Diana M. Manu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (J.M.); (H.B.S.)
| | | | | |
Collapse
|
6
|
Remes O, Mendes JF, Templeton P. Biological, Psychological, and Social Determinants of Depression: A Review of Recent Literature. Brain Sci 2021; 11:1633. [PMID: 34942936 PMCID: PMC8699555 DOI: 10.3390/brainsci11121633] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Depression is one of the leading causes of disability, and, if left unmanaged, it can increase the risk for suicide. The evidence base on the determinants of depression is fragmented, which makes the interpretation of the results across studies difficult. The objective of this study is to conduct a thorough synthesis of the literature assessing the biological, psychological, and social determinants of depression in order to piece together the puzzle of the key factors that are related to this condition. Titles and abstracts published between 2017 and 2020 were identified in PubMed, as well as Medline, Scopus, and PsycInfo. Key words relating to biological, social, and psychological determinants as well as depression were applied to the databases, and the screening and data charting of the documents took place. We included 470 documents in this literature review. The findings showed that there are a plethora of risk and protective factors (relating to biological, psychological, and social determinants) that are related to depression; these determinants are interlinked and influence depression outcomes through a web of causation. In this paper, we describe and present the vast, fragmented, and complex literature related to this topic. This review may be used to guide practice, public health efforts, policy, and research related to mental health and, specifically, depression.
Collapse
Affiliation(s)
- Olivia Remes
- Institute for Manufacturing, University of Cambridge, Cambridge CB3 0FS, UK
| | | | - Peter Templeton
- IfM Engage Limited, Institute for Manufacturing, University of Cambridge, Cambridge CB3 0FS, UK;
- The William Templeton Foundation for Young People’s Mental Health (YPMH), Cambridge CB2 0AH, UK
| |
Collapse
|
7
|
Yang N, Sun S, Duan G, Lv K, Liang C, Zhang L, Yu J, Tang Y, Lu G. Advances of Endothelial Progenitor Cells in the Development of Depression. Front Cell Neurosci 2021; 15:608656. [PMID: 34421539 PMCID: PMC8375291 DOI: 10.3389/fncel.2021.608656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
Depression is a major psychological disease of human beings. With the severity of depression, it elevates the risk of cardiovascular disease (CVD), especially acute coronary syndrome (ACS), resulting in serious harm to human health. The number of endothelial progenitor cells (EPCs) is closely related to the development of depression. It has been reported that the number of peripheral blood EPCs in patients with depression was reduced. However, effects on the function of EPCs in depression are still unclear. This paper aims to analyze and summarize the research of EPCs in depression, and we envision that EPCs might act as a new target for evaluating the severity of depression and its complications.
Collapse
Affiliation(s)
- Nana Yang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China.,Medical Laboratory Animal Center, Weifang Medical University, Weifang, China
| | - Shiyu Sun
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Guangqing Duan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Kaixuan Lv
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Chen Liang
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China
| | - Linlin Zhang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Jielun Yu
- School of Bioscience and Technology, Weifang Medical University, Weifang, China.,Medical Laboratory Animal Center, Weifang Medical University, Weifang, China
| | - Yaohui Tang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guohua Lu
- School of Psychology, Weifang Medical University, Weifang, China
| |
Collapse
|
8
|
Schiele MA, Zwanzger P, Schwarte K, Arolt V, Baune BT, Domschke K. Serotonin Transporter Gene Promoter Hypomethylation as a Predictor of Antidepressant Treatment Response in Major Depression: A Replication Study. Int J Neuropsychopharmacol 2020; 24:191-199. [PMID: 33125470 PMCID: PMC7968622 DOI: 10.1093/ijnp/pyaa081] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The serotonin transporter gene (SLC6A4; 5-HTT; SERT) is considered a prime candidate in pharmacogenetic research in major depressive disorder (MDD). Besides genetic variation, recent advances have spotlighted the involvement of epigenetic mechanisms such as DNA methylation in predicting antidepressant treatment response in "pharmaco-epigenetic" approaches. In MDD, lower SLC6A4 promoter methylation has been suggested to predict impaired response to serotonergic antidepressants. The present study sought to replicate and extend this finding in a large, independent sample of MDD patients. METHODS The sample comprised n = 236 Caucasian patients with MDD receiving antidepressant medication in a naturalistic treatment setting. Functional DNA methylation of 9 CpG sites located in the SLC6A4 promoter region was analyzed via direct sequencing of sodium bisulfite- treated DNA extracted from blood cells. Patients were assessed over the course of a 6-week in-patient treatment using the Hamilton Depression Scale (HAM-D). RESULTS Results confirm relative SLC6A4 hypomethylation to predict impaired antidepressant response both dimensionally and categorically (HAM-D reductions < 50%) and to furthermore be indicative of nonremission (HAM-D > 7). This also held true in a homogenous subgroup of patients continuously treated with selective serotonin reuptake inhibitors or serotonin/noradrenaline reuptake inhibitors (n = 110). CONCLUSIONS Impaired response to serotonergic antidepressants via SLC6A4 hypomethylation may be conveyed by increased gene expression and consequently decreased serotonin availability, which may counteract the effects of serotonergic antidepressants. The present results could in the future inform clinical decision-making towards a more personalized treatment of MDD.
Collapse
Affiliation(s)
- M A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - P Zwanzger
- kbo-Inn-Salzach-Klinikum, Wasserburg am Inn, Germany,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - K Schwarte
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - V Arolt
- Institute of Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - B T Baune
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany,Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - K Domschke
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany,Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Germany,Correspondence: Katharina Domschke, MA, MD, PhD, Department of Psychiatry and Psychotherapy, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany ()
| |
Collapse
|
9
|
Bhattacharyya S, Ahmed AT, Arnold M, Liu D, Luo C, Zhu H, Mahmoudiandehkordi S, Neavin D, Louie G, Dunlop BW, Frye MA, Wang L, Weinshilboum RM, Krishnan RR, Rush AJ, Kaddurah-Daouk R. Metabolomic signature of exposure and response to citalopram/escitalopram in depressed outpatients. Transl Psychiatry 2019; 9:173. [PMID: 31273200 PMCID: PMC6609722 DOI: 10.1038/s41398-019-0507-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/29/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
Abstract
Metabolomics provides valuable tools for the study of drug effects, unraveling the mechanism of action and variation in response due to treatment. In this study we used electrochemistry-based targeted metabolomics to gain insights into the mechanisms of action of escitalopram/citalopram focusing on a set of 31 metabolites from neurotransmitter-related pathways. Overall, 290 unipolar patients with major depressive disorder were profiled at baseline, after 4 and 8 weeks of drug treatment. The 17-item Hamilton Depression Rating Scale (HRSD17) scores gauged depressive symptom severity. More significant metabolic changes were found after 8 weeks than 4 weeks post baseline. Within the tryptophan pathway, we noted significant reductions in serotonin (5HT) and increases in indoles that are known to be influenced by human gut microbial cometabolism. 5HT, 5-hydroxyindoleacetate (5HIAA), and the ratio of 5HIAA/5HT showed significant correlations to temporal changes in HRSD17 scores. In the tyrosine pathway, changes were observed in the end products of the catecholamines, 3-methoxy-4-hydroxyphenylethyleneglycol and vinylmandelic acid. Furthermore, two phenolic acids, 4-hydroxyphenylacetic acid and 4-hydroxybenzoic acid, produced through noncanconical pathways, were increased with drug exposure. In the purine pathway, significant reductions in hypoxanthine and xanthine levels were observed. Examination of metabolite interactions through differential partial correlation networks revealed changes in guanosine-homogentisic acid and methionine-tyrosine interactions associated with HRSD17. Genetic association studies using the ratios of these interacting pairs of metabolites highlighted two genetic loci harboring genes previously linked to depression, neurotransmission, or neurodegeneration. Overall, exposure to escitalopram/citalopram results in shifts in metabolism through noncanonical pathways, which suggest possible roles for the gut microbiome, oxidative stress, and inflammation-related mechanisms.
Collapse
Affiliation(s)
- Sudeepa Bhattacharyya
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ahmed T Ahmed
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC, USA
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Duan Liu
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Chunqiao Luo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Siamak Mahmoudiandehkordi
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC, USA
| | - Drew Neavin
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gregory Louie
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC, USA
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Richard M Weinshilboum
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ranga R Krishnan
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, USA
| | - A John Rush
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC, USA
- Texas Tech University, Health Sciences Center, Permian Basin, Odessa, TX, USA
- Duke-National University of Singapore, Singapore, Singapore
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|
10
|
Lam D, Ancelin ML, Ritchie K, Freak-Poli R, Saffery R, Ryan J. Genotype-dependent associations between serotonin transporter gene (SLC6A4) DNA methylation and late-life depression. BMC Psychiatry 2018; 18:282. [PMID: 30180828 PMCID: PMC6122720 DOI: 10.1186/s12888-018-1850-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Disrupted serotonergic signaling is often a feature of depression and the role of the serotonin transporter gene (SLC6A4), responsible for serotonin re-uptake, has received much attention in this regard. Most studies have focused on the polymorphic 5-HTTLPR upstream repeat, or DNA methylation at the promoter CpG island. Few studies have explored the influence of genetic variation across the gene on DNA methylation, and their combined association with depression risk. The aim of this study was to determine whether genetic variation in the SLC6A4 gene influences promoter DNA methylation, and whether these are associated with depression status. METHOD The ESPRIT study involves a community-based population of older individuals (> 65 years of age). Major depressive disorder (MDD) was diagnosed according to DSM-IV (American Psychiatric Association, 1994) criteria, and severe depressive symptoms assessed by the Centre for Epidemiological Studies Depression (CES-D) Scale. Sequenom MassARRAY was used to measure SLC6A4 methylation status (n = 302). RESULTS Nominally significant associations were observed between SLC6A4 genetic variants (5-HTTLPR, rs140700, rs4251417, rs6354, rs25528, rs25531) and DNA methylation at several CpG sites. In multivariate regression, DNA methylation was associated with depression status, but only in the presence of specific genotypes. In individuals homozygous for the short 5-HTTLPR and 5-HTTLPR/r25531 alleles, lower methylation at two CpGs was associated with depression (β = - 0.44 to β = - 0.31; p = 0.001 to p = 0.038). CONCLUSION We present evidence for genotype-dependent associations between SLC6A4 methylation and depression. Genetic variants may also play a role in influencing promoter methylation levels and its association with depression.
Collapse
Affiliation(s)
- Dilys Lam
- 0000 0004 0614 0346grid.416107.5Cancer & Disease Epigenetics, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC Australia
| | - Marie-Laure Ancelin
- 0000 0001 2097 0141grid.121334.6INSERM, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France
| | - Karen Ritchie
- 0000 0001 2097 0141grid.121334.6INSERM, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France ,0000 0004 1936 7988grid.4305.2Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Rosanne Freak-Poli
- 0000 0004 1936 7857grid.1002.3Department of Epidemiology and Preventive Medicine, Monash University, Level 5, The Alfred Centre, 99 Commercial Road, Melbourne, 3004 Australia
| | - Richard Saffery
- 0000 0004 0614 0346grid.416107.5Cancer & Disease Epigenetics, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC Australia ,0000 0001 2179 088Xgrid.1008.9Department of Paediatrics, University of Melbourne, Parkville, VIC Australia
| | - Joanne Ryan
- Cancer & Disease Epigenetics, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia. .,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia. .,INSERM, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France. .,Department of Epidemiology and Preventive Medicine, Monash University, Level 5, The Alfred Centre, 99 Commercial Road, Melbourne, 3004, Australia.
| |
Collapse
|