Ma W, Dou Q, Ha X. Let-7a-5p inhibits BMSCs osteogenesis in postmenopausal osteoporosis mice.
Biochem Biophys Res Commun 2019;
510:53-58. [PMID:
30660362 DOI:
10.1016/j.bbrc.2019.01.003]
[Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE
The aim of this study was to investigate the mechanism of let-7a-5p in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in postmenopausal osteoporosis (PMOP) mice.
METHODS
A mouse model of PMOP was established and osteoporosis model was identified by micro-CT scan. BMSCs in the sham group and PMOP group were cultured and osteogenic differentiation was induced. The expression of let-7a-5p in BMSCs was detected by qRT-PCR, and BMSCs was induced by osteogenic differentiation in sham and PMOP group. The BMSCs treated by let-7a-5p mimics, let-7a-5p inhibitor and negative control were named as let-7a-5p mimics group, mimics NC group, let-7a-5p inhibitor group and inhibitor NC group, respectively. ALP staining and alizarin red staining were used to detect osteogenic differentiation ability, qRT-PCR and western blot were used to detect the expression of Runt-related transcription factor 2 (Runx2) and Osterix. The targeting relationship between let-7a-5p and TGFBR1 were verificated by target scan and luciferase reporter gene assay.
RESULTS
The PMOP mouse model was successfully established. The expression of let-7a-5p in BMSCs of PMOP group was significantly higher than that in the sham group (P < 0.05). Let-7a-5p reduced the expression of ALP and the formation of calcified nodules, while also inhibited the expression of Runx2 and Osterix. TGFBR1 is the target gene of let-7a-5p.
CONCLUSION
Let-7a-5p might inhibit the osteogenic differentiation of BMSCs in PMOP mice by regulating TGFBR1.
Collapse