1
|
Drole Torkar A, Klinc A, Remec ZI, Rankovic B, Bartolj K, Bertok S, Colja S, Cuk V, Debeljak M, Kozjek E, Repic Lampret B, Mlinaric M, Mohar Hajnsek T, Perko D, Stajer K, Tesovnik T, Trampuz D, Ulaga B, Kovac J, Battelino T, Zerjav Tansek M, Groselj U. Sudden Death of a Four-Day-Old Newborn Due to Mitochondrial Trifunctional Protein/Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiencies and a Systematic Literature Review of Early Deaths of Neonates with Fatty Acid Oxidation Disorders. Int J Neonatal Screen 2025; 11:9. [PMID: 39982343 PMCID: PMC11843868 DOI: 10.3390/ijns11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
Mitochondrial trifunctional protein (MTP) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies have been a part of the Slovenian newborn screening (NBS) program since 2018. We describe a case of early lethal presentation of MTPD/LCHADD in a term newborn. The girl was born after an uneventful pregnancy and delivery, and she was discharged home at the age of 3 days, appearing well. At the age of 4 days, she was found without signs of life. Resuscitation was not successful. The NBS test performed using tandem mass spectrometry (MS/MS) showed a positive screen for MTPD/LCHADD. Genetic analysis performed on a dried blood spot (DBS) sample identified two heterozygous variants in the HADHA gene: a nucleotide duplication introducing a premature termination codon (p.Arg205Ter) and a nucleotide substitution (p.Glu510Gln). Post-mortem studies showed massive macro-vesicular fat accumulation in the liver and, to a smaller extent, in the heart, consistent with MTPD/LCHADD. A neonatal acute cardiac presentation resulting in demise was suspected. We conducted a systematic literature review of early neonatal deaths within 14 days postpartum attributed to confirmed fatty acid oxidation disorders (FAODs), which are estimated to account for 5% of sudden infant deaths. We discuss the pitfalls of the NBS for MTPD/LCHADD.
Collapse
Affiliation(s)
- Ana Drole Torkar
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana University Medical Center, Bohoriceva 20, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (J.K.)
| | - Ana Klinc
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (J.K.)
| | - Ziga Iztok Remec
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Branislava Rankovic
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (J.K.)
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Klara Bartolj
- Novo Mesto General Hospital, Smihelska cesta 1, 8000 Novo Mesto, Slovenia
| | - Sara Bertok
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana University Medical Center, Bohoriceva 20, 1000 Ljubljana, Slovenia
| | - Sara Colja
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Vanja Cuk
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Marusa Debeljak
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (J.K.)
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Eva Kozjek
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Barbka Repic Lampret
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Matej Mlinaric
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana University Medical Center, Bohoriceva 20, 1000 Ljubljana, Slovenia
| | | | - Daša Perko
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Katarina Stajer
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana University Medical Center, Bohoriceva 20, 1000 Ljubljana, Slovenia
| | - Tine Tesovnik
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Domen Trampuz
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Blanka Ulaga
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Jernej Kovac
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (J.K.)
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana University Medical Center, Bohoriceva 20, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (J.K.)
| | - Mojca Zerjav Tansek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana University Medical Center, Bohoriceva 20, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (J.K.)
| | - Urh Groselj
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana University Medical Center, Bohoriceva 20, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (J.K.)
| |
Collapse
|
3
|
Heathfield LJ, Martin LJ, Ramesar R. A Systematic Review of Molecular Autopsy Studies in Sudden Infant Death Cases. J Pediatr Genet 2018; 7:143-149. [PMID: 30430032 DOI: 10.1055/s-0038-1668079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
Sudden unexpected death is an upsetting event, which can remain unexplained even after post-mortem investigation. Internationally, molecular autopsies have shown to resolve up to 44% of unexplained cases; however, it is currently unclear how many of these were infants. This systematic literature review showed that significantly fewer infant cases were resolved (median: 4%) compared with cohorts of 1 to 45 years old (median: 32%). Further, no study involving indigenous African participants has yet been published. Overall, molecular autopsies hold immense value to living family members and is motivation to explore new avenues in infant cohorts.
Collapse
Affiliation(s)
- Laura Jane Heathfield
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa.,MRC/UCT Research Unit for Genomic and Precision Medicine, Division of Human Genetics, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Lorna Jean Martin
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Raj Ramesar
- MRC/UCT Research Unit for Genomic and Precision Medicine, Division of Human Genetics, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Feillet F, Ogier H, Cheillan D, Aquaviva C, Labarthe F, Baruteau J, Chabrol B, de Lonlay P, Valayanopoulos V, Garnotel R, Dobbelaere D, Briand G, Jeannesson E, Vassault A, Vianey-Saban C. [Medium-chain acyl-CoA-dehydrogenase (MCAD) deficiency: French consensus for neonatal screening, diagnosis, and management]. Arch Pediatr 2012; 19:184-93. [PMID: 22244319 DOI: 10.1016/j.arcped.2011.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/28/2011] [Indexed: 12/30/2022]
Abstract
MCAD deficiency is the most common fatty acid oxidation disorder, with the prevalence varying from 1/10,000 to 1/27,000 in the countries adjacent to France. As the High Authority for Health has recently proposed including MCAD deficiency in the panel of diseases neonatally screened for in France, a consensus was written for the management of MCAD deficiency diagnosed either clinically or by neonatal screening. Patients may present acutely with hyperammonemia, hypoglycemia, encephalopathy, and hepatomegaly, mainly after a prolonged fast of intercurrent infection. Sudden death related to heartbeat disorders may also occur. The diagnosis of MCAD deficiency is suspected on the plasma acylcarnitine and/or the urinary organic acid profile. The diagnosis is confirmed by molecular biology and the enzymatic activity for patients who are not homozygous for the main mutation c.985A>G. However, some MCAD-deficient individuals may remain asymptomatic throughout life. The mainstay of treatment consists in avoiding prolonged fast and prescribing l-carnitine for patients who exhibit a deficiency in plasma carnitine. This management has radically modified the natural history of MCAD deficiency. This consensus will allow homogeneous management of these patients once the neonatal screening of MCAD deficiency has been introduced in France.
Collapse
Affiliation(s)
- F Feillet
- Inserm U 954, centre de référence des maladies héréditaires du métabolisme, hôpital de Brabois-Enfants, rue du Morvan, 54511 Vandœuvre, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Tang Y, Siegel D, Sampson B. Molecular Investigations of Sudden Unexplained Deaths. Acad Forensic Pathol 2011. [DOI: 10.23907/2011.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sudden unexplained deaths in apparently healthy individuals (newborn through adult) pose a vexing challenge to medical examiners, law enforcement and society as a whole. Recent advances in “molecular autopsies” have begun to uncover the mystery surrounding sudden unexplained deaths by identifying mutations that can result in or predispose an apparently healthy individual to sudden death. Genetic risks of sudden unexplained deaths have been studied from several different perspectives, and categorized generally by systems, including: cardiac, nervous, immune, and metabolic. This article reviews the genetic risks in sudden unexplained deaths, presents the current state and challenges of molecular investigations, and sheds light on future directions in sudden unexplained death investigations.
Collapse
Affiliation(s)
- Yingying Tang
- Molecular Genetics Laboratory in the New York City Office of Chief Medical Examiner and Forensic Medicine Department at New York University School of Medicine, New York, New York
| | - Donald Siegel
- New York City Office of Chief Medical Examiner, and Forensic Medicine Department at New York University School of Medicine, New York, New York (DS, BS)
| | - Barbara Sampson
- New York City Office of Chief Medical Examiner, and Forensic Medicine Department at New York University School of Medicine, New York, New York (DS, BS)
| |
Collapse
|