1
|
Zhang S, Luo Y, Sun W, Tan W, Zeng H. Prognostic Values of Core Genes in Pilocytic Astrocytom. World Neurosurg 2023; 176:e101-e108. [PMID: 37169070 DOI: 10.1016/j.wneu.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Pilocytic astrocytoma (PA) is the most common primary brain tumor in children and adolescents. Treatment strategy largely depends on its key genes and molecular mutations. This study aimed to identify potential biomarkers of PA closely related to its prognosis. METHODS The gene expression profiles (series numbers GSE50161, GSE66354, and GSE86574) of PA and normal brain tissues were downloaded from the Gene Expression Omnibus database. The Gene Expression Omnibus2R was used to identify differentially expressed genes. The overlapping differentially expressed genes were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) database. A protein-protein interaction network was constructed using Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape. The Gene Expression Profiling Interactive Analysis 2 (GEPIA2) tool analyzed the impact of hub genes on PA prognosis based on the Kaplan-Meier curves. RESULTS Compared with normal brain tissues (n = 36), a total of 37 upregulated and 144 downregulated genes were identified in PA (n = 40). In the protein-protein interaction network construction and GEPIA2 survival analysis, 2 of the top 10 hub genes were significantly associated with decreased overall survival of PA patients, namely Gamma-aminobutyric acid A receptor alpha 2 (hazard ratio = 2.8, P < 0.01) and regulating synaptic membrane exocytosis protein 1) (hazard ratio = 3.2, P < 0.01). CONCLUSIONS This bioinformatics analysis reveals that low expression of Gamma-aminobutyric acid A receptor alpha 2 and regulating synaptic membrane exocytosis protein 1 is associated with a favorable prognosis for PA patients. These 2 hub genes could be novel biomarkers for prognosis assessment, furthermore a key element for treatment decisions in the future.
Collapse
Affiliation(s)
- Siqi Zhang
- Shantou University Medical College, Shantou University, Shantou, China; Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yi Luo
- Shantou University Medical College, Shantou University, Shantou, China; Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Weisheng Sun
- Shantou University Medical College, Shantou University, Shantou, China; Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Weiting Tan
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China.
| |
Collapse
|
3
|
Deluche E, Bessette B, Durand S, Caire F, Rigau V, Robert S, Chaunavel A, Forestier L, Labrousse F, Jauberteau MO, Durand K, Lalloué F. CHI3L1, NTRK2, 1p/19q and IDH Status Predicts Prognosis in Glioma. Cancers (Basel) 2019; 11:cancers11040544. [PMID: 30991699 PMCID: PMC6521129 DOI: 10.3390/cancers11040544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/30/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to identify relevant biomarkers for the prognosis of glioma considering current molecular changes such as IDH mutation and 1p19q deletion. Gene expression profiling was performed using the TaqMan Low Density Array and hierarchical clustering using 96 selected genes in 64 patients with newly diagnosed glioma. The expression dataset was validated on a large independent cohort from The Cancer Genome Atlas (TCGA) database. A differential expression panel of 26 genes discriminated two prognostic groups regardless of grade and molecular groups of tumors: Patients having a poor prognosis with a median overall survival (OS) of 23.0 ± 9.6 months (group A) and patients having a good prognosis with a median OS of 115.0 ± 6.6 months (group B) (p = 0.007). Hierarchical clustering of the glioma TCGA cohort supported the prognostic value of these 26 genes (p < 0.0001). Among these genes, CHI3L1 and NTRK2 were identified as factors that can be associated with IDH status and 1p/19q co-deletion to distinguish between prognostic groups of glioma from the TCGA cohort. Therefore, CHI3L1 associated with NTRK2 seemed to be able to provide new information on glioma prognosis.
Collapse
Affiliation(s)
- Elise Deluche
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
- Department of Medical Oncology, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Barbara Bessette
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
| | - Stephanie Durand
- Bioinformatics Team, BISCEM Platform, CBRS, University of Limoges, 2 rue du Docteur Marcland, 87025 Limoges, France.
- EA7500 PEREINE, University of Limoges, 123 av. Albert Thomas, 87060 Limoges, France.
| | - François Caire
- Department of Neurosurgery, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Valérie Rigau
- Department of Neuropathology and INSERM U1051, Hospital Saint Eloi-Gui de Chauliac, 80 av. Augustin Fliche, 34090 Montpellier, France.
| | - Sandrine Robert
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
- Department of Pathology, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Alain Chaunavel
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
- Department of Pathology, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Lionel Forestier
- Bioinformatics Team, BISCEM Platform, CBRS, University of Limoges, 2 rue du Docteur Marcland, 87025 Limoges, France.
| | - François Labrousse
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
- Department of Pathology, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Marie-Odile Jauberteau
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
- Department of Immunology, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Karine Durand
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
- Department of Pathology, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Fabrice Lalloué
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
| |
Collapse
|
4
|
Schittenhelm J. Recent advances in subtyping tumors of the central nervous system using molecular data. Expert Rev Mol Diagn 2016; 17:83-94. [PMID: 27893285 DOI: 10.1080/14737159.2017.1266259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Primary brain tumors account for substantial morbidity and mortality. They often infiltrate the brain diffusely, continue growing, and cause adverse events, such as headaches, seizures, and neurological deficits. The classification of primary brain tumors, based for decades on histology, has been fundamentally changed by the World Health Organization in 2016 by incorporation of molecular data. Areas covered: Literature from glioblastomas, high- and low-grade astrocytic, oligodendroglial, glioneuronal and ependymal tumors from the last five years were reviewed. Results from comprehensive molecular profiling of neoplasms and impact of recent molecular subtyping on neuropathological diagnosis are presented. Expert commentary: The identification of frequent acquired mutations shows that adult and pediatric glioblastomas have divergent biology with differing prognoses. Astrocytoma and oligodendroglioma are more closely related than previously thought. Molecular profiling now enables the precise classification of most diffuse gliomas into three clinically and therapeutically different subtypes according to the presence or absence of IDH mutation and 1p/19q codeletion. New subgroups with different clinical outcomes and anatomic locations have emerged in ependymomas and pediatric embryonal tumors.
Collapse
Affiliation(s)
- Jens Schittenhelm
- a Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tuebingen , Eberhard Karls University of Tuebingen , Tuebingen , Germany.,b Center for CNS Tumors, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen , Eberhard Karls University of Tuebingen , Tuebingen , Germany
| |
Collapse
|