1
|
do Carmo Filho JRL, Lima IC, de Barros Silva PG, Alves APNN, Sousa FB, Assreuy AMS, Mota MRL. Photobiomodulation Exerts Anti-Inflammatory and Antioxidant Effects Reducing the Development of Tumors Elicited by 4-NQO in the Mice Tongue. JOURNAL OF BIOPHOTONICS 2025; 18:e202400390. [PMID: 39844584 DOI: 10.1002/jbio.202400390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
OBJECTIVE Evaluate the influence of photobiomodulation in a model of oral carcinogenesis induced by 4-nitroquinoline-n-oxide (4-NQO). SUBJECTIVE Ninety-six Swiss mice received topical application of 1% 4-NQO on tongue dorsum, for 20 weeks. The tongue was subjected to photobiomodulation with red (71.4 J/cm2) and infrared laser (142.8 J/cm2) starting at week 0, 12, and 16. After 20 weeks, tongues were removed for the following analyzes: histological assessment, immunohistochemical reactions (cyclin D1/Ki-67/TGF-β1), quantification of MPO, n-AG, MDA, GSH, total proteins, TNF-α, IL-1β, and IL-6 levels. RESULTS 4-NQO showed significant increase in the frequency of carcinoma (p < 0.001), and in the immunostaining for cyclin D1/Ki-67/TGF-β1 (p < 0.005), along with increased levels of TNF- α, IL-1β, IL-6, MPO, n-AG, MDA, and total proteins (p < 0.001), that were reduced by photobiomodulation with red and infrared lasers (p < 0.005). CONCLUSION Photobiomodulation reduces tumor development, accompanied by reduced inflammatory cells and content of cytokines and oxidative markers associated with carcinogenesis.
Collapse
Affiliation(s)
- José Ronildo Lins do Carmo Filho
- Department of Dental Clinic, Division of Oral Pathology and Stomatology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Iásly Costa Lima
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Brazil
| | - Paulo Goberlânio de Barros Silva
- Department of Dental Clinic, Division of Oral Pathology and Stomatology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Ana Paula Negreiros Nunes Alves
- Department of Dental Clinic, Division of Oral Pathology and Stomatology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Fabricio Bitu Sousa
- Department of Dental Clinic, Division of Oral Pathology and Stomatology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | | | - Mário Rogério Lima Mota
- Department of Dental Clinic, Division of Oral Pathology and Stomatology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
2
|
Zhang Q, Zeng Z, Xie W, Zeng Z. Highly Expressed SPC25 Promotes the Stemness, Proliferation and EMT of Oral Squamous Cell Carcinoma Cells via Modulating the TGF-β Signaling Pathway. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Qiufang Zhang
- Department of Stomatology, Ganzhou People’s Hospital
| | - Zijun Zeng
- Anesthesia Surgery Center, the First Affiliated Hospital of Gannan Medical University
| | - Wen Xie
- Health Management Center, the First Affiliated Hospital of Gannan Medical University
| | - Zhimei Zeng
- Department of Stomatology, the First Affiliated Hospital of Gannan Medical University
| |
Collapse
|
3
|
Zhang C, Liao X, Ma Z, Liu S, Fang F, Mai H. Overexpression of β-Adrenergic Receptors and the Suppressive Effect of β 2-Adrenergic Receptor Blockade in Oral Squamous Cell Carcinoma. J Oral Maxillofac Surg 2020; 78:1871.e1-1871.e23. [PMID: 32640209 DOI: 10.1016/j.joms.2020.05.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE The purpose of this project was to investigate the expression of β-adrenergic receptors in oral squamous cell carcinoma (OSCC) and the tumor suppressive activity of β2-adrenergic receptor (β2-AR) blockade. MATERIALS AND METHODS Samples of 15 normal oral mucosal epithelial tissues, 60 surgically resected OSCC tissues, and 60 adjacent para-carcinoma tissues were collected. The expression of β1-adrenergic receptor and β2-AR was detected by real-time quantitative polymerase chain reaction and the Western blot test. SCC9 and Cal27 cell lines and primary OSCC cells also were included and treated with ICI-118,551 (MedChemExpress, Monmouth Junction, NJ), a selective β2-AR blocker. In addition, the Cal27 cell line was treated with propranolol (a nonselective β-adrenergic receptor blocker) to verify the suppressive effect of β2-AR blockade. For in vivo assays, Cal27 cells were subcutaneously injected in the tongue flank of nude mice. ICI-118,551 was orally administered to the mice in the treatment group daily. High-throughput sequencing was used to screen for changes in gene expression. RESULTS Real-time quantitative polymerase chain reaction and the Western blot test both showed that β1-adrenergic receptor and β2-AR were overexpressed in OSCC tissues and cells. A relationship was found between β2-AR and a more advanced clinical stage, as well as preoperative lymphatic metastasis. After treatment with ICI-118,551 or propranolol, the capacities for proliferation, invasion, and metastasis of OSCC cells were significantly inhibited. Tumor size was significantly different between the ICI-118,551 and control groups. The survival time in the ICI-118,551 group also was prolonged significantly. Moreover, high-throughput sequencing identified 19 affected signaling pathways, including mitogen-activated protein kinase and PI3K-Akt. We confirmed a significant change to the expression of several genes closely related to the progression of cancer. CONCLUSION This study showed that β2-AR is related to a more advanced clinical stage and preoperative lymphatic metastasis. Additionally, a β2-AR blocker has a significant suppressive effect in OSCC.
Collapse
Affiliation(s)
- Chong Zhang
- Resident, Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment; and Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Xianxiang Liao
- Resident, Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment; and Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Zhen Ma
- Resident, Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment; and Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Shiqi Liu
- Resident, Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment; and Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Fang Fang
- Resident, Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment; and Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Huaming Mai
- Professor, Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment; and Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.
| |
Collapse
|
4
|
Celentano A, Glurich I, Borgnakke WS, Farah CS. World Workshop on Oral Medicine VII: Prognostic biomarkers in oral leukoplakia and proliferative verrucous leukoplakia-A systematic review of retrospective studies. Oral Dis 2020; 27:848-880. [PMID: 32306449 DOI: 10.1111/odi.13363] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To systematically review retrospective studies examining prognostic potentials of candidate biomarkers to stratify malignant progression of oral leukoplakia (OL) and proliferative verrucous leukoplakia (PVL). MATERIALS AND METHODS A systematic literature search of PubMed, EMBASE, Evidence-Based Medicine and Web of Science databases targeted literature published through 29 March 2018. Inter-rater agreement was ascertained during title, abstract and full-text reviews. Eligibility evaluation and data abstraction from eligible studies were guided by predefined PICO questions and bias assessment by the Quality in Prognosis Studies tool. Reporting followed Preferred Reporting Items for Systematic Review and Meta-Analysis criteria. Biomarkers were stratified based on cancer hallmarks. RESULTS Eligible studies (n = 54/3,415) evaluated 109 unique biomarkers in tissue specimens from 2,762 cases (2,713 OL, 49 PVL). No biomarker achieved benchmarks for clinical application to detect malignant transformation. Inter-rater reliability was high, but 65% of included studies had high "Study Confounding" bias risk. CONCLUSION There was no evidence to support translation of candidate biomarkers predictive of malignant transformation of OL and PVL. Systematically designed, large, optimally controlled, collaborative, prospective and longitudinal studies with a priori-specified methods to identify, recruit, prospectively follow and test for malignant transformation are needed to enhance feasibility of prognostic biomarkers predicting malignant OL or PVL transformation.
Collapse
Affiliation(s)
- Antonio Celentano
- Melbourne Dental School, The University of Melbourne, Melbourne, Vic., Australia
| | - Ingrid Glurich
- Center for Oral and Systemic Health, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Wenche S Borgnakke
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Camile S Farah
- Australian Centre for Oral Oncology Research & Education, Perth, WA, Australia.,Oral, Maxillofacial and Dental Surgery, Fiona Stanley Hospital, Murdoch, WA, Australia
| |
Collapse
|
5
|
Moraes JKD, Wagner VP, Fonseca FP, Amaral‐Silva GKD, de Farias CB, Pilar EFS, Gregianin L, Roesler R, Vargas PA, Martins MD. Activation of BDNF/TrkB/Akt pathway is associated with aggressiveness and unfavorable survival in oral squamous cell carcinoma. Oral Dis 2019; 25:1925-1936. [DOI: 10.1111/odi.13190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/14/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Juliana Kern de Moraes
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
| | - Vivian Petersen Wagner
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology School of Dentistry Federal University of Minas Gerais Belo Horizonte Brazil
| | | | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory Experimental Research Center Porto Alegre Clinical Hospital Federal University of Rio Grande do Sul Porto Alegre Brazil
- Children’s Cancer Institute Porto Alegre Brazil
| | - Emily Ferreira Salles Pilar
- Experimental Pathology Unit Clinics Hospital of Porto Alegre Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Lauro Gregianin
- Children’s Cancer Institute Porto Alegre Brazil
- Pediatric Oncology Service Clinical Hospital Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory Experimental Research Center Porto Alegre Clinical Hospital Federal University of Rio Grande do Sul Porto Alegre Brazil
- Children’s Cancer Institute Porto Alegre Brazil
- Department of Pharmacology Institute for Basic Health Sciences Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
| | - Manoela Domingues Martins
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
- Experimental Pathology Unit Clinics Hospital of Porto Alegre Federal University of Rio Grande do Sul Porto Alegre Brazil
- Department of Oral Pathology School of Dentistry Federal University of Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
6
|
Yuan X, Zhang Z, Jiang K, Wang X, Li Y. Preliminary Study of the Role F-Box Protein 32 (FBXO32) in Colorectal Neoplasms Through the Transforming Growth Factor beta (TGF-β)/Smad4 Signalling Pathway. Med Sci Monit 2018; 24:1080-1088. [PMID: 29465067 PMCID: PMC5829536 DOI: 10.12659/msm.908030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background F-box protein 32 (FBXO32) (also known as atrogin-1), a member of the F-box protein family, was recently shown to be a transforming growth factor beta (TGF-β)/Smad4 target gene involved in regulating cell survival. It can be transcriptionally silenced by epigenetic mechanisms in some cancers, but its role in colorectal carcinoma (CRC) is unclear. We investigated the role of FBXO32 in CRC and determined its prognostic significance. Material/Methods We used real-time quantitative PCR, Western blot, and immunohistochemistry to elucidate the role of FBXO32 in clinical specimens and primary CRC cell lines. Differences in patient survival were determined by the Kaplan-Meier method and log-rank test. Results We found that the FBXO32 and SMAD4 levels were higher in normal tissues than in CRC tissues, but PAI-1 and VEGF levels showed the opposite pattern. The expressions of FBXO32 and SMAD4 were related to clinicopathological parameters in CRC. Kaplan-Meier analyses showed that the 5-year overall survival of the low-FBXO32 expression group was significantly shorter than that of the high-FBXO32 expression group (p=0.010). Conclusions The fbxo32 gene is a novel tumor suppressor that inhibits CRC progression by inducing differentiation. Elevated expression of FBXO32 predicts longer survival in CRC patients.
Collapse
Affiliation(s)
- Xuemin Yuan
- Department of Gastroenterology, Laboratory of Translational Gastroentrology, Shandong University, Qilu Hospital, Jinan, Shandong, China (mainland).,Department of Gastroenterology, The People's Hospital of Linyi, Linyi, Shandong, China (mainland)
| | - Zhen Zhang
- Department of Surgery, The People's Hospital of Linyi, Linyi, Shandong, China (mainland)
| | - Kaitong Jiang
- Department of Gastroenterology, The People's Hospital of Linyi, Linyi, Shandong, China (mainland)
| | - Xinguo Wang
- Kingmed Diagnostics, Jinan, Shandong, China (mainland)
| | - Yanqing Li
- Department of Gastroenterology, Laboratory of Translational Gastroenterology, Shandong University, Qilu Hospital, Jinan, Shandong, China (mainland)
| |
Collapse
|
7
|
Magnussen SN, Hadler-Olsen E, Costea DE, Berg E, Jacobsen CC, Mortensen B, Salo T, Martinez-Zubiaurre I, Winberg JO, Uhlin-Hansen L, Svineng G. Cleavage of the urokinase receptor (uPAR) on oral cancer cells: regulation by transforming growth factor - β1 (TGF-β1) and potential effects on migration and invasion. BMC Cancer 2017; 17:350. [PMID: 28526008 PMCID: PMC5438506 DOI: 10.1186/s12885-017-3349-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Urokinase plasminogen activator (uPA) receptor (uPAR) is up-regulated at the invasive tumour front of human oral squamous cell carcinoma (OSCC), indicating a role for uPAR in tumour progression. We previously observed elevated expression of uPAR at the tumour-stroma interface in a mouse model for OSCC, which was associated with increased proteolytic activity. The tumour microenvironment regulated uPAR expression, as well as its glycosylation and cleavage. Both full-length- and cleaved uPAR (uPAR (II-III)) are involved in highly regulated processes such as cell signalling, proliferation, migration, stem cell mobilization and invasion. The aim of the current study was to analyse tumour associated factors and their effect on uPAR cleavage, and the potential implications for cell proliferation, migration and invasion. METHODS Mouse uPAR was stably overexpressed in the mouse OSCC cell line AT84. The ratio of full-length versus cleaved uPAR as analysed by Western blotting and its regulation was assessed by addition of different protease inhibitors and transforming growth factor - β1 (TGF-β1). The role of uPAR cleavage in cell proliferation and migration was analysed using real-time cell analysis and invasion was assessed using the myoma invasion model. RESULTS We found that when uPAR was overexpressed a proportion of the receptor was cleaved, thus the cells presented both full-length uPAR and uPAR (II-III). Cleavage was mainly performed by serine proteases and urokinase plasminogen activator (uPA) in particular. When the OSCC cells were stimulated with TGF-β1, the production of the uPA inhibitor PAI-1 was increased, resulting in a reduction of uPAR cleavage. By inhibiting cleavage of uPAR, cell migration was reduced, and by inhibiting uPA activity, invasion was reduced. We could also show that medium containing soluble uPAR (suPAR), and cleaved soluble uPAR (suPAR (II-III)), induced migration in OSCC cells with low endogenous levels of uPAR. CONCLUSIONS These results show that soluble factors in the tumour microenvironment, such as TGF-β1, PAI-1 and uPA, can influence the ratio of full length and uPAR (II-III) and thereby potentially effect cell migration and invasion. Resolving how uPAR cleavage is controlled is therefore vital for understanding how OSCC progresses and potentially provides new targets for therapy.
Collapse
Affiliation(s)
- Synnove Norvoll Magnussen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Elin Hadler-Olsen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway.,Diagnostic Clinic - Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Eli Berg
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Cristiane Cavalcanti Jacobsen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Bente Mortensen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Tuula Salo
- Cancer and Translational Research Medicine Unit, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oral and Maxillofacial diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital Helsinki, Helsinki, Finland.,Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, SP-13414-903, Brazil
| | - Inigo Martinez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Jan-Olof Winberg
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Lars Uhlin-Hansen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway.,Diagnostic Clinic - Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Gunbjorg Svineng
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| |
Collapse
|