1
|
Saba L, Cau R, Vergallo R, Kooi ME, Staub D, Faa G, Congiu T, Ntaios G, Wasserman BA, Benson J, Nardi V, Kawakami R, Lanzino G, Virmani R, Libby P. Carotid artery atherosclerosis: mechanisms of instability and clinical implications. Eur Heart J 2025; 46:904-921. [PMID: 39791527 DOI: 10.1093/eurheartj/ehae933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/25/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Cardiovascular disease remains a prominent cause of disability and premature death worldwide. Within this spectrum, carotid artery atherosclerosis is a complex and multifaceted condition, and a prominent precursor of acute ischaemic stroke and other cardiovascular events. The intricate interplay among inflammation, oxidative stress, endothelial dysfunction, lipid metabolism, and immune responses participates in the development of lesions, leading to luminal stenosis and potential plaque instability. Even non-stenotic plaques can precipitate a sudden cerebrovascular event, regardless of the degree of luminal encroachment. In this context, carotid imaging modalities have proved their efficacy in providing in vivo characterization of plaque features, contributing substantially to patient risk stratification and clinical management. This review emphasizes the importance of identifying high-risk individuals by use of current imaging modalities, biomarkers, and risk stratification tools. Such approaches inform early intervention and the implementation of personalized therapeutic strategies, ultimately enhancing patient outcomes in the realm of cardiovascular disease management.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, University of Cagliari, Via Università, 40, 09124 Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, University of Cagliari, Via Università, 40, 09124 Cagliari, Italy
| | - Rocco Vergallo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - M Eline Kooi
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Daniel Staub
- Vascular Medicine/Angiology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gavino Faa
- Department of Pathology, University of Cagliari, Cagliari, Italy
| | - Terenzio Congiu
- Department of Pathology, University of Cagliari, Cagliari, Italy
| | - George Ntaios
- Department of Internal Medicine, School of Health Sciences, University of Thessaly, Larissa University Hospital, Larissa 41132, Greece
| | - Bruce A Wasserman
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, MD, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, MD, USA
| | - John Benson
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Valentina Nardi
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Rika Kawakami
- Department of Cardiovascular Pathology, CVPath Institute, Inc., Gaithersburg, MD, USA
| | | | - Renu Virmani
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Miceli G, Basso MG, Pintus C, Pennacchio AR, Cocciola E, Cuffaro M, Profita M, Rizzo G, Tuttolomondo A. Molecular Pathways of Vulnerable Carotid Plaques at Risk of Ischemic Stroke: A Narrative Review. Int J Mol Sci 2024; 25:4351. [PMID: 38673936 PMCID: PMC11050267 DOI: 10.3390/ijms25084351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The concept of vulnerable carotid plaques is pivotal in understanding the pathophysiology of ischemic stroke secondary to large-artery atherosclerosis. In macroscopic evaluation, vulnerable plaques are characterized by one or more of the following features: microcalcification; neovascularization; lipid-rich necrotic cores (LRNCs); intraplaque hemorrhage (IPH); thin fibrous caps; plaque surface ulceration; huge dimensions, suggesting stenosis; and plaque rupture. Recognizing these macroscopic characteristics is crucial for estimating the risk of cerebrovascular events, also in the case of non-significant (less than 50%) stenosis. Inflammatory biomarkers, such as cytokines and adhesion molecules, lipid-related markers like oxidized low-density lipoprotein (LDL), and proteolytic enzymes capable of degrading extracellular matrix components are among the key molecules that are scrutinized for their associative roles in plaque instability. Through their quantification and evaluation, these biomarkers reveal intricate molecular cross-talk governing plaque inflammation, rupture potential, and thrombogenicity. The current evidence demonstrates that plaque vulnerability phenotypes are multiple and heterogeneous and are associated with many highly complex molecular pathways that determine the activation of an immune-mediated cascade that culminates in thromboinflammation. This narrative review provides a comprehensive analysis of the current knowledge on molecular biomarkers expressed by symptomatic carotid plaques. It explores the association of these biomarkers with the structural and compositional attributes that characterize vulnerable plaques.
Collapse
Affiliation(s)
- Giuseppe Miceli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Maria Grazia Basso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Chiara Pintus
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Andrea Roberta Pennacchio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Elena Cocciola
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Mariagiovanna Cuffaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Martina Profita
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Giuliana Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
3
|
Hou P, Fang J, Liu Z, Shi Y, Agostini M, Bernassola F, Bove P, Candi E, Rovella V, Sica G, Sun Q, Wang Y, Scimeca M, Federici M, Mauriello A, Melino G. Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis 2023; 14:691. [PMID: 37863894 PMCID: PMC10589261 DOI: 10.1038/s41419-023-06206-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of fatty deposits in the inner walls of vessels. These plaques restrict blood flow and lead to complications such as heart attack or stroke. The development of atherosclerosis is influenced by a variety of factors, including age, genetics, lifestyle, and underlying health conditions such as high blood pressure or diabetes. Atherosclerotic plaques in stable form are characterized by slow growth, which leads to luminal stenosis, with low embolic potential or in unstable form, which contributes to high risk for thrombotic and embolic complications with rapid clinical onset. In this complex scenario of atherosclerosis, macrophages participate in the whole process, including the initiation, growth and eventually rupture and wound healing stages of artery plaque formation. Macrophages in plaques exhibit high heterogeneity and plasticity, which affect the evolving plaque microenvironment, e.g., leading to excessive lipid accumulation, cytokine hyperactivation, hypoxia, apoptosis and necroptosis. The metabolic and functional transitions of plaque macrophages in response to plaque microenvironmental factors not only influence ongoing and imminent inflammatory responses within the lesions but also directly dictate atherosclerotic progression or regression. In this review, we discuss the origin of macrophages within plaques, their phenotypic diversity, metabolic shifts, and fate and the roles they play in the dynamic progression of atherosclerosis. It also describes how macrophages interact with other plaque cells, particularly T cells. Ultimately, targeting pathways involved in macrophage polarization may lead to innovative and promising approaches for precision medicine. Further insights into the landscape and biological features of macrophages within atherosclerotic plaques may offer valuable information for optimizing future clinical treatment for atherosclerosis by targeting macrophages.
Collapse
Affiliation(s)
- Pengbo Hou
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiankai Fang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhanhong Liu
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Pierluigi Bove
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Rovella
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Sica
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Qiang Sun
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Ying Wang
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Federici
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
4
|
Tsioufis P, Theofilis P, Tsioufis K, Tousoulis D. The Impact of Cytokines in Coronary Atherosclerotic Plaque: Current Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232415937. [PMID: 36555579 PMCID: PMC9788180 DOI: 10.3390/ijms232415937] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Coronary atherosclerosis is a chronic pathological process that involves inflammation together with endothelial dysfunction and lipoprotein dysregulation. Experimental studies during the past decades have established the role of inflammatory cytokines in coronary artery disease, namely interleukins (ILs), tumor necrosis factor (TNF)-α, interferon-γ, and chemokines. Moreover, their value as biomarkers in disease development and progression further enhance the validity of this interaction. Recently, cytokine-targeted treatment approaches have emerged as potential tools in the management of atherosclerotic disease. IL-1β, based on the results of the CANTOS trial, remains the most validated option in reducing the residual cardiovascular risk. Along the same line, colchicine was also proven efficacious in preventing major adverse cardiovascular events in large clinical trials of patients with acute and chronic coronary syndrome. Other commercially available agents targeting IL-6 (tocilizumab), TNF-α (etanercept, adalimumab, infliximab), or IL-1 receptor antagonist (anakinra) have mostly been assessed in the setting of other inflammatory diseases and further testing in atherosclerosis is required. In the future, potential targeting of the NLRP3 inflammasome, anti-inflammatory IL-10, or atherogenic chemokines could represent appealing options, provided that patient safety is proven to be of no concern.
Collapse
|
5
|
Scimeca M, Montanaro M, Cardellini M, Bonfiglio R, Anemona L, Urbano N, Bonanno E, Menghini R, Casagrande V, Martelli E, Servadei F, Giacobbi E, Ippoliti A, Bei R, Manzari V, Federici M, Schillaci O, Mauriello A. High Sensitivity C-Reactive Protein Increases the Risk of Carotid Plaque Instability in Male Dyslipidemic Patients. Diagnostics (Basel) 2021; 11:2117. [PMID: 34829465 PMCID: PMC8624324 DOI: 10.3390/diagnostics11112117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aim of this study was to evaluate how the high sensitivity C-reactive protein (hs-CRP) values influence the risk of carotid plaque instability in association with other cardiovascular risk factors. METHODS One hundred and fifty-six carotid plaques from both symptomatic and asymptomatic patients requiring surgical carotid endarterectomy were retrospectively collected. According to the modified American Heart Association, atherosclerosis plaques have been histologically distinguished into unstable and stable. The following anamnestic and hematochemical data were also considered: age, gender, hypertension, diabetes mellitus, smoking habit, therapy, low-density lipoprotein (LDL)-C, kidney failure and hs-CRP. RESULTS The results of our study clearly show that high levels of hs-CRP significantly increase the carotid plaque instability in dyslipidemic patients. Specifically, a 67% increase of the risk of carotid plaque instability was observed in patients with high LDL-C. Therefore, the highest risk was observed in male dyslipidemic patients 2333 (95% CI 0.73-7.48) and in aged female patients 2713 (95% CI 0.14-53.27). DISCUSSION These data strongly suggest a biological relationship between the hs-CRP values and the alteration of lipidic metabolism mostly in male patients affected by carotid atherosclerosis. The measurement of hs-CRP might be useful as a potential screening tool in the prevention of atheroscletotic disease.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.B.); (F.S.); (E.G.); (A.M.)
- San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
- Faculty of Medicine, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.B.); (F.S.); (E.G.); (A.M.)
| | - Marina Cardellini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.C.); (R.M.); (V.C.); (M.F.)
- Center for Atherosclerosis, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.B.); (F.S.); (E.G.); (A.M.)
| | - Lucia Anemona
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.B.); (F.S.); (E.G.); (A.M.)
| | - Nicoletta Urbano
- Nuclear Medicine Unit, Department of Oncohaematology, Policlinico “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy;
| | - Elena Bonanno
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.B.); (F.S.); (E.G.); (A.M.)
| | - Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.C.); (R.M.); (V.C.); (M.F.)
| | - Viviana Casagrande
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.C.); (R.M.); (V.C.); (M.F.)
| | - Eugenio Martelli
- Department of General and Specialist Surgery “P. Stefanini”, Sapienza University of Rome, 00185 Rome, Italy;
- Division of Vascular Surgery, S. Anna and S. Sebastiano Hospital, 81100 Caserta, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.B.); (F.S.); (E.G.); (A.M.)
| | - Erica Giacobbi
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.B.); (F.S.); (E.G.); (A.M.)
| | - Arnaldo Ippoliti
- Vascular Surgery Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (V.M.)
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (V.M.)
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.C.); (R.M.); (V.C.); (M.F.)
- Center for Atherosclerosis, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- IRCCS Neuromed, Via Atinense, 18, 8607 Pozzilli, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.B.); (F.S.); (E.G.); (A.M.)
| |
Collapse
|