1
|
Calvani R, Joseph AM, Adhihetty PJ, Miccheli A, Bossola M, Leeuwenburgh C, Bernabei R, Marzetti E. Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy. Biol Chem 2013; 394:393-414. [PMID: 23154422 DOI: 10.1515/hsz-2012-0247] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/13/2012] [Indexed: 12/18/2022]
Abstract
Muscle loss during aging and disuse is a highly prevalent and disabling condition, but knowledge about cellular pathways mediating muscle atrophy is still limited. Given the postmitotic nature of skeletal myocytes, the maintenance of cellular homeostasis relies on the efficiency of cellular quality control mechanisms. In this scenario, alterations in mitochondrial function are considered a major factor underlying sarcopenia and muscle atrophy. Damaged mitochondria are not only less bioenergetically efficient, but also generate increased amounts of reactive oxygen species, interfere with cellular quality control mechanisms, and display a greater propensity to trigger apoptosis. Thus, mitochondria stand at the crossroad of signaling pathways that regulate skeletal myocyte function and viability. Studies on these pathways have sometimes provided unexpected and counterintuitive results, which suggests that they are organized into a complex, heterarchical network that is currently insufficiently understood. Untangling the complexity of such a network will likely provide clinicians with novel and highly effective therapeutics to counter the muscle loss associated with aging and disuse. In this review, we summarize the current knowledge on the mechanisms whereby mitochondrial dysfunction intervenes in the pathogenesis of sarcopenia and disuse atrophy, and highlight the prospect of targeting specific processes to treat these conditions.
Collapse
Affiliation(s)
- Riccardo Calvani
- Institute of Crystallography, Italian National Research Council (CNR), Bari 70126, Italy
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Dysregulation and cellular mislocalization of specific miRNAs in myotonic dystrophy type 1. Neuromuscul Disord 2011; 21:81-8. [DOI: 10.1016/j.nmd.2010.11.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/15/2010] [Accepted: 11/22/2010] [Indexed: 12/23/2022]
|
3
|
Marzetti E, Hwang JC, Lees HA, Wohlgemuth SE, Dupont-Versteegden EE, Carter CS, Bernabei R, Leeuwenburgh C. Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1800:235-44. [PMID: 19450666 PMCID: PMC2826514 DOI: 10.1016/j.bbagen.2009.05.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/06/2009] [Accepted: 05/12/2009] [Indexed: 01/07/2023]
Abstract
Accelerated apoptosis in skeletal muscle is increasingly recognized as a potential mechanism contributing to the development of sarcopenia of aging and disuse muscle atrophy. Given their central role in the regulation of apoptosis, mitochondria are regarded as key players in the pathogenesis of myocyte loss during aging and other atrophying conditions. Oxidative damage to mitochondrial constituents, impaired respiration and altered mitochondrial turnover have been proposed as potential triggering events for mitochondrial apoptotic signaling. In addition, iron accumulation within mitochondria may enhance the susceptibility to apoptosis during the development of sarcopenia and possibly acute muscle atrophy, likely through exacerbation of oxidative stress. Mitochondria can induce myocyte apoptosis via both caspase-dependent and independent pathways, although the apoptogenic mediators involved may be different depending on age, muscle type and specific atrophying conditions. Despite the considerable advances made, additional research is necessary to establish a definite causal link between apoptotic signaling and the development of sarcopenia and acute atrophy. Furthermore, a translational effort is required to determine the role played by apoptosis in the pathogenesis of sarcopenia and disuse-induced muscle loss in human subjects.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Department of Aging and Geriatrics, Institute on Aging, Division of Biology of Aging, University of Florida, Gainesville, FL 32610-0143, USA
- Department of Gerontology, Geriatrics and Physiatrics, Catholic University of the Sacred Heart, Rome, 00168, Italy
| | - Judy C.Y. Hwang
- Department of Aging and Geriatrics, Institute on Aging, Division of Biology of Aging, University of Florida, Gainesville, FL 32610-0143, USA
| | - Hazel A. Lees
- Department of Aging and Geriatrics, Institute on Aging, Division of Biology of Aging, University of Florida, Gainesville, FL 32610-0143, USA
| | - Stephanie E. Wohlgemuth
- Department of Aging and Geriatrics, Institute on Aging, Division of Biology of Aging, University of Florida, Gainesville, FL 32610-0143, USA
| | - Esther E. Dupont-Versteegden
- Department of Rehabilitation Sciences, Division of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536-0200, USA
| | - Christy S. Carter
- Department of Aging and Geriatrics, Institute on Aging, Division of Biology of Aging, University of Florida, Gainesville, FL 32610-0143, USA
| | - Roberto Bernabei
- Department of Gerontology, Geriatrics and Physiatrics, Catholic University of the Sacred Heart, Rome, 00168, Italy
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatrics, Institute on Aging, Division of Biology of Aging, University of Florida, Gainesville, FL 32610-0143, USA
| |
Collapse
|
4
|
Vandamme D, Lambert E, Waterschoot D, Cognard C, Vandekerckhove J, Ampe C, Constantin B, Rommelaere H. alpha-Skeletal muscle actin nemaline myopathy mutants cause cell death in cultured muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1259-71. [PMID: 19393268 DOI: 10.1016/j.bbamcr.2009.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 03/24/2009] [Accepted: 04/14/2009] [Indexed: 11/24/2022]
Abstract
Nemaline myopathy is a neuromuscular disorder, characterized by muscle weakness and hypotonia and is, in 20% of the cases, caused by mutations in the gene encoding alpha-skeletal muscle actin, ACTA1. It is a heterogeneous disease with various clinical phenotypes and severities. In patients the ultrastructure of muscle cells is often disturbed by nemaline rods and it is thought this is the cause for muscle weakness. To search for possible defects during muscle cell differentiation we expressed alpha-actin mutants in myoblasts and allowed these cells to differentiate into myotubes. Surprisingly, we observed two striking new phenotypes in differentiating myoblasts: rounding up of cells and bleb formation, two features reminiscent of apoptosis. Indeed expression of these mutants induced cell death with apoptotic features in muscle cell culture, using AIF and endonuclease G, in a caspase-independent but calpain-dependent pathway. This is the first report on a common cellular defect induced by NM causing actin mutants, independent of their biochemical phenotypes or rod and aggregate formation capacity. These data suggest that lack of type II fibers or atrophy observed in nemaline myopathy patients may be also due to an increased number of dying muscle cells.
Collapse
Affiliation(s)
- Drieke Vandamme
- Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, B-9000, Gent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Smith MI, Huang YY, Deshmukh M. Skeletal muscle differentiation evokes endogenous XIAP to restrict the apoptotic pathway. PLoS One 2009; 4:e5097. [PMID: 19333375 PMCID: PMC2658743 DOI: 10.1371/journal.pone.0005097] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 01/25/2009] [Indexed: 01/09/2023] Open
Abstract
Myotube apoptosis occurs normally during muscle development and aging but it can lead to destruction of skeletal muscle in neuromuscular diseases. Therefore, understanding how myotube apoptosis is regulated is important for developing novel strategies for treatment of muscle loss. We investigated the regulation of apoptosis in skeletal muscle and report a striking increase in resistance to apoptosis following differentiation. We find mitotic C2C12 cells (myoblast-like cells) are sensitive to cytosolic cytochrome c microinjection. However, differentiated C2C12 cells (myotube-like cells) and primary myotubes are markedly resistant. This resistance is due to endogenous X-linked inhibitor of apoptotic protein (XIAP). Importantly, the selective difference in the ability of XIAP to block myotube but not myoblast apoptosis is not due to a change in XIAP but rather a decrease in Apaf-1 expression. This decrease in Apaf-1 links XIAP to caspase activation and death. Our findings suggest that in order for myotubes to die, they may degrade XIAP, functionally inactivate XIAP or upregulate Apaf-1. Importantly, we identify a role for endogenous Smac in overcoming XIAP to allow myotube death. However, in postmitotic cardiomyocytes, where XIAP also restricts apoptosis, endogenous Smac was not capable of overcoming XIAP to cause death. These results show that as skeletal muscle differentiate, they become resistant to apoptosis because of the ability of XIAP to regulate caspase activation. The increased restriction of apoptosis in myotubes is presumably important to ensure the long term survival of these postmitotic cells as they play a vital role in the physiology of organisms.
Collapse
Affiliation(s)
- Michelle I. Smith
- Department of Cell and Developmental Biology and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yolanda Y. Huang
- Department of Cell and Developmental Biology and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Mohanish Deshmukh
- Department of Cell and Developmental Biology and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|