1
|
Bodenstine TM, Seftor REB, Khalkhali-Ellis Z, Seftor EA, Pemberton PA, Hendrix MJC. Maspin: molecular mechanisms and therapeutic implications. Cancer Metastasis Rev 2013; 31:529-51. [PMID: 22752408 DOI: 10.1007/s10555-012-9361-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maspin, a non-inhibitory member of the serine protease inhibitor superfamily, has been characterized as a tumor suppressor gene in multiple cancer types. Among the established anti-tumor effects of Maspin are the inhibition of cancer cell invasion, attachment to extracellular matrices, increased sensitivity to apoptosis, and inhibition of angiogenesis. However, while significant experimental data support the role of Maspin as a tumor suppressor, clinical data regarding the prognostic implications of Maspin expression have led to conflicting results. This highlights the need for a better understanding of the context dependencies of Maspin in normal biology and how these are perturbed in the context of cancer. In this review, we outline the regulation and roles of Maspin in normal and developmental biology while discussing novel evidence and emerging theories related to its functions in cancer. We provide insight into the immense therapeutic potential of Maspin and the challenges related to its successful clinical translation.
Collapse
Affiliation(s)
- Thomas M Bodenstine
- Children's Hospital of Chicago Research Center, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Box 222, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
2
|
Piérard GE. Cell proliferation in cutaneous malignant melanoma: relationship with neoplastic progression. ISRN DERMATOLOGY 2012; 2012:828146. [PMID: 22363864 PMCID: PMC3265211 DOI: 10.5402/2012/828146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 11/30/2011] [Indexed: 12/12/2022]
Abstract
The establishment of the diagnosis of cutaneous malignant melanoma (CMM) always calls for histopathological confirmation. Further to the recognition of the CMM aspects, immunohistochemistry is helpful, in particular, in determining the size of the replicative compartment and the activity in each of the cell cycle phases (G(1), S, G(2), M). The involvement of cancer stem cells and transient amplifier cells in CMM genesis is beyond doubt. The proliferation activity is indicative of the neoplastic progression and is often related to the clinical growth rate of the neoplasm. It allows to distinguish high-risk CMM commonly showing a high growth rate, from those CMMs of lower malignancy associated with a more limited growth rate. The recruitment and progression of CMM cells in the cell cycle of proliferation depend on mitogen-activated protein kinase (MAPK) pathway and result from a loss of control normally involving a series of key regulatory cyclins. In addition, the apoptotic pathways potentially counteracting any excess in proliferative activity are out of the dependency of specific regulatory molecular mechanisms. Key molecular components involved in the deregulation of the growth fraction, the cell cycle phases of proliferation, and apoptosis are presently described in CMM.
Collapse
Affiliation(s)
- G. E. Piérard
- Department of Dermatopathology, University Hospital of Liège, 4000 Liège, Belgium
| |
Collapse
|
3
|
Villares GJ, Zigler M, Bar-Eli M. The emerging role of the thrombin receptor (PAR-1) in melanoma metastasis--a possible therapeutic target. Oncotarget 2011; 2:8-17. [PMID: 21378407 PMCID: PMC3248147 DOI: 10.18632/oncotarget.211] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Melanoma remains as the deadliest form of skin cancer with limited and inefficient treatment options available for patients with metastatic disease. Within the last decade, the thrombin receptor, Protease Activated Receptor-1, has been described as an essential gene involved in the progression of human melanoma. PAR-1 is known to activate adhesive, invasive and angiogenic factors to promote melanoma metastasis. It is overexpressed not only in metastatic melanoma cell lines but is also highly expressed in metastatic lesions as compared to primary nevi and normal skin. Recently, PAR-1 has been described to regulate the gap junction protein Connexin 43 and the tumor suppressor gene Maspin to promote the metastatic melanoma phenotype. Herein, we review the role of PAR-1 in the progression of melanoma as well as utilizing PAR-1-regulated genes as potential therapeutic targets for melanoma treatment.
Collapse
Affiliation(s)
- Gabriel J Villares
- The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 173 Houston, TX, USA
| | | | | |
Collapse
|
4
|
Lai TC, Chou HC, Chen YW, Lee TR, Chan HT, Shen HH, Lee WT, Lin ST, Lu YC, Wu CL, Chan HL. Secretomic and Proteomic Analysis of Potential Breast Cancer Markers by Two-Dimensional Differential Gel Electrophoresis. J Proteome Res 2010; 9:1302-22. [DOI: 10.1021/pr900825t] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tzu-Chia Lai
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, and Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hsiu-Chuan Chou
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, and Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Yi-Wen Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, and Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Tian-Ren Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, and Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hsin-Tsu Chan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, and Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hsin-Hsin Shen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, and Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Wei-Ta Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, and Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Szu-Ting Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, and Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ying-Chieh Lu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, and Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chieh-Lin Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, and Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, and Industrial Technology Research Institute, Hsinchu, Taiwan
| |
Collapse
|