2
|
Kubitz R, Dröge C, Kluge S, Stross C, Walter N, Keitel V, Häussinger D, Stindt J. Autoimmune BSEP disease: disease recurrence after liver transplantation for progressive familial intrahepatic cholestasis. Clin Rev Allergy Immunol 2016; 48:273-84. [PMID: 25342496 DOI: 10.1007/s12016-014-8457-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Severe cholestasis may result in end-stage liver disease with the need of liver transplantation (LTX). In children, about 10 % of LTX are necessary because of cholestatic liver diseases. Apart from bile duct atresia, three types of progressive familial intrahepatic cholestasis (PFIC) are common causes of severe cholestasis in children. The three subtypes of PFIC are defined by the involved genes: PFIC-1, PFIC-2, and PFIC-3 are due to mutations of P-type ATPase ATP8B1 (familial intrahepatic cholestasis 1, FIC1), the ATP binding cassette transporter ABCB11 (bile salt export pump, BSEP), or ABCB4 (multidrug resistance protein 3, MDR3), respectively. All transporters are localized in the canalicular membrane of hepatocytes and together mediate bile salt and phospholipid transport. In some patients with PFIC-2 disease, recurrence has been observed after LTX, which mimics a PFIC phenotype. It could be shown by several groups that inhibitory anti-BSEP antibodies emerge, which most likely cause disease recurrence. The prevalence of severe BSEP mutations (e.g., splice site and premature stop codon mutations) is very high in this group of patients. These mutations often result in the complete absence of BSEP, which likely accounts for an insufficient auto-tolerance against BSEP. Although many aspects of this "new" disease are not fully elucidated, the possibility of anti-BSEP antibody formation has implications for the pre- and posttransplant management of PFIC-2 patients. This review will summarize the current knowledge including diagnosis, pathomechanisms, and management of "autoimmune BSEP disease."
Collapse
Affiliation(s)
- Ralf Kubitz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Vilarinho S, Erson-Omay EZ, Harmanci AS, Morotti R, Carrion-Grant G, Baranoski J, Knisely AS, Ekong U, Emre S, Yasuno K, Bilguvar K, Günel M. Paediatric hepatocellular carcinoma due to somatic CTNNB1 and NFE2L2 mutations in the setting of inherited bi-allelic ABCB11 mutations. J Hepatol 2014; 61:1178-83. [PMID: 25016225 DOI: 10.1016/j.jhep.2014.07.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/27/2014] [Accepted: 07/02/2014] [Indexed: 01/24/2023]
Abstract
Hepatocellular carcinoma (HCC) rarely occurs in childhood. We describe a patient with new onset of pruritus at 8 months of age who at 17 months of age was found to have a 2.5 cm HCC. To delineate the possible genetic basis of this tumour, we performed whole exome sequencing (WES) of the germline DNA and identified two novel predictably deleterious missense mutations in ABCB11, encoding bile salt export pump (BSEP), confirmed in the parental DNA as bi-allelic and inherited. Although inherited ABCB11 mutations have previously been linked to HCC in a small number of cases, the molecular mechanisms of hepatocellular carcinogenesis in ABCB11 disease are unknown. WES of the HCC tissue uncovered somatic driver mutations in the beta-catenin (CTNNB1) and nuclear-factor-erythroid-2-related-factor-2 (NFE2L2) genes. Moreover, clonality analysis predicted that the CTNNB1 mutation was clonal and occurred earlier during carcinogenesis, whereas the NFE2L2 mutation was acquired later. Interestingly, background liver parenchyma showed no inflammation or fibrosis and BSEP expression was preserved. This is the first study to identify somatic CTNNB1 and NFE2L2 mutations in early childhood arisen in the setting of inherited bi-allelic ABCB11 mutations. Rapid WES analysis expedited this child's diagnosis and treatment, and likely improved her prognosis.
Collapse
Affiliation(s)
- Sílvia Vilarinho
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06510, United States; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, United States
| | - E Zeynep Erson-Omay
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, United States; Department of Neurosurgery, Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT 06510, United States
| | - Akdes Serin Harmanci
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, United States; Department of Neurosurgery, Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT 06510, United States
| | - Raffaella Morotti
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, United States
| | - Geneive Carrion-Grant
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, United States; Department of Neurosurgery, Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT 06510, United States
| | - Jacob Baranoski
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, United States; Department of Neurosurgery, Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT 06510, United States
| | - A S Knisely
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, Denmark Hill, London SE5 9RS, United Kingdom
| | - Udeme Ekong
- Department of Pediatrics, Section of Pediatric Gastroenterology and Hepatology, Yale School of Medicine, New Haven, CT 06510, United States
| | - Sukru Emre
- Department of Surgery, Section of Transplantation and Immunology, Yale School of Medicine, New Haven, CT 06510, United States
| | - Katsuhito Yasuno
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, United States; Department of Neurosurgery, Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT 06510, United States
| | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, United States; Department of Neurosurgery, Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT 06510, United States
| | - Murat Günel
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, United States; Department of Neurosurgery, Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT 06510, United States.
| |
Collapse
|
4
|
Baghdasaryan A, Chiba P, Trauner M. Clinical application of transcriptional activators of bile salt transporters. Mol Aspects Med 2014; 37:57-76. [PMID: 24333169 PMCID: PMC4045202 DOI: 10.1016/j.mam.2013.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/21/2013] [Accepted: 12/01/2013] [Indexed: 02/07/2023]
Abstract
Hepatobiliary bile salt (BS) transporters are critical determinants of BS homeostasis controlling intracellular concentrations of BSs and their enterohepatic circulation. Genetic or acquired dysfunction of specific transport systems causes intrahepatic and systemic retention of potentially cytotoxic BSs, which, in high concentrations, may disturb integrity of cell membranes and subcellular organelles resulting in cell death, inflammation and fibrosis. Transcriptional regulation of canalicular BS efflux through bile salt export pump (BSEP), basolateral elimination through organic solute transporters alpha and beta (OSTα/OSTβ) as well as inhibition of hepatocellular BS uptake through basolateral Na(+)-taurocholate cotransporting polypeptide (NTCP) represent critical steps in protection from hepatocellular BS overload and can be targeted therapeutically. In this article, we review the potential clinical implications of the major BS transporters BSEP, OSTα/OSTβ and NTCP in the pathogenesis of hereditary and acquired cholestatic syndromes, provide an overview on transcriptional control of these transporters by the key regulatory nuclear receptors and discuss the potential therapeutic role of novel transcriptional activators of BS transporters in cholestasis.
Collapse
Affiliation(s)
- Anna Baghdasaryan
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria; Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Peter Chiba
- Institute of Medical Chemistry, Medical University of Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria.
| |
Collapse
|