1
|
Liu Z, Yu Q, Zhou F, Yu M, Shu H, Zhu M, Peng T. Repetitive transcranial magnetic stimulation and constraint-induced movement therapy combined in the treatment of post-stroke movement disorders: a narrative review. Front Hum Neurosci 2025; 19:1578258. [PMID: 40260173 PMCID: PMC12009840 DOI: 10.3389/fnhum.2025.1578258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/21/2025] [Indexed: 04/23/2025] Open
Abstract
Stroke is a significant cardiovascular and cerebrovascular condition and is among the primary causes of prolonged neurological impairment globally. Approximately 55%-75% of stroke survivors will experience some form of long-term sensorimotor impairment. Post-stroke, the upper limb typically exhibits restricted mobility, complicating daily chores for 70% of patients and impairing normal limb utilization. Repetitive Transcranial Magnetic Stimulation (rTMS), a prominent non-invasive neuromodulation technique designed to enhance functional recovery post-stroke, has garnered significant attention in clinical studies. Likewise, constraint-induced movement therapy (CIMT) has been extensively employed in therapeutic settings to promote neuroplasticity. However, there remain several issues with it in practical application. Recently, considerable focus has been directed toward a novel treatment known as rTMS in conjunction with obligatory motor therapy. This can circumvent the issues associated with conventional treatments and optimize the advantages of both. This article discusses the present status of clinical research with rTMS and CIMT.
Collapse
Affiliation(s)
- Zhennan Liu
- Graduate School of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qingying Yu
- Department of Rehabilitation Medicine, Hongdu Hospital of Traditional Chinese Medicine, Nanchang, China
| | - Feng Zhou
- Department of Rehabilitation Medicine, Hongdu Hospital of Traditional Chinese Medicine, Nanchang, China
| | - Muyao Yu
- Graduate School of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Huan Shu
- Graduate School of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Manhua Zhu
- Department of Rehabilitation Medicine, Hongdu Hospital of Traditional Chinese Medicine, Nanchang, China
| | - Tianzhong Peng
- Department of Rehabilitation Medicine, Hongdu Hospital of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
2
|
Zhang W, Dai L, Liu W, Li X, Chen J, Zhang H, Chen W, Duan W. The effect and optimal parameters of repetitive transcranial magnetic stimulation on lower extremity motor function in stroke patient: a systematic review and meta-analysis. Disabil Rehabil 2024; 46:4889-4900. [PMID: 37991330 DOI: 10.1080/09638288.2023.2283605] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
PURPOSE This study aimed to evaluate the efficacy of repetitive transcranial magnetic stimulation (rTMS) in treating lower limb motor dysfunction after stroke and explore the optimal stimulation parameters. METHODS PubMed, Embase, Cochrane Library, and other relevant databases were systematically queried for randomised controlled trials (RCTs) investigating the efficacy of rTMS in addressing lower limb motor dysfunction post-stroke. The search encompassed records from inception to July 2022. The assessed outcomes encompassed parameters such as the Fugl-Meyer motor function score for lower limbs, balance function, and Barthel index (BI). Three independent researchers were responsible for research selection, data extraction, and quality assessment. Study screening, data extraction, and bias evaluation were performed independently by two reviewers. Data synthesis was undertaken using Review Manager 5.3, while Stata version 14.0 software was employed for generating the funnel plot. RESULTS A total of 13 studies and 428 patients were included. The meta-analysis indicated that rTMS had a positive effect on the BI (MD = 5.87, 95% CI [0.99, 10.76], p = 0.02, I2 = 86%, N of studies = 8, N of participants = 248). Subgroup analysis was performed on the stimulation frequency, treatment duration, and different stroke stages (stimulation frequency was low-frequency (LF)-rTMS (MD = 4.45, 95% CI [1.05, 7.85], p = 0.01, I2 = 0%, N of studies = 4, N of participants = 120); treatment time ≤ 15 d: (MD = 4.41, 95% CI [2.63, 6.18], p < 0.00001, I2 = 0%, N of studies = 4, N of participants = 124); post-stroke time ≤6 months: (MD = 4.37, 95% CI [2.42, 6.32], p < 0.0001, I2 = 0%, N of studies = 5, N of participants = 172). CONCLUSION LF-rTMS had a significant improvement effect on BI score, while high-frequency (HF)-rTMS and iTBS had no significant effect. And stroke time ≤6 months in patients with treatment duration ≤15 d had the best treatment effect.
Collapse
Affiliation(s)
- Wanying Zhang
- The Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, PR China
- Rehabilitation Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Lei Dai
- The Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, PR China
- Rehabilitation Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Wentan Liu
- The Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, PR China
- Rehabilitation Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Xiang Li
- The Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, PR China
- Rehabilitation Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jianer Chen
- The Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, PR China
- Rehabilitation Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
- Geriatric rehabilitation Department, Zhejiang Rehabilitation Medical Center, Hangzhou, PR China
| | - Huihang Zhang
- The Third Clinical College, Zhejiang Chinese Medical University, Hangzhou, PR China
- Rehabilitation Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Weihai Chen
- College of Automation Science and Electrical Engineering, Beihang University, Hangzhou, PR China
| | - Wen Duan
- College of Automation Science and Electrical Engineering, Beihang University, Hangzhou, PR China
| |
Collapse
|
3
|
Tangjade A, Suputtitada A, Pacheco-Barrios K, Fregni F. Noninvasive Neuromodulation Combined With Rehabilitation Therapy Improves Balance and Gait Speed in Patients With Stroke: A Systematic Review and Network Meta-analysis. Am J Phys Med Rehabil 2024; 103:789-796. [PMID: 38363653 DOI: 10.1097/phm.0000000000002439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
OBJECTIVE This study aimed to determine repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and cranial nerve noninvasive neuromodulation affect functional balance, gait speed, and walking cadence in stroke patients. METHODS We searched PubMed, Embase, Cochrane, and Scopus (June 22, 2022) for randomized controlled trials. Three reviewers independently performed data extraction and assessed the risk of bias. Network and pairwise meta-analyses were performed to assess indirect and direct comparisons. RESULTS We included 34 studies ( N = 915 patients). Sixty percent had moderate-to-high methodological quality. The meta-analyses showed positive effects of repetitive transcranial magnetic stimulation combined with rehabilitation therapy compared with sham on gait speed, walking cadence, and balance function with weighted mean differences and 95% confidence interval of 0.08 (0.03 to 0.13), 7.16 (3.217 to 11.103), and 3.05 (0.52 to 5.57), respectively. Transcranial direct current stimulation showed improvement on the time up and go test (-0.88 [-1.68 to -0.08]). From the surface under the cumulative ranking analyses, repetitive transcranial magnetic stimulation is the best ranked treatment for gait speed and functional balance improvement compared with transcranial direct current stimulation and sham interventions. There were not enough studies to include cranial nerve noninvasive neuromodulation in the meta-analysis. CONCLUSIONS Walking cadence and speed, functional balance significantly improved after repetitive transcranial magnetic stimulation with short-term effects, which were superior to that of transcranial direct current stimulation and sham treatments. Transcranial direct current stimulation showed short-term beneficial effects on the Time Up and Go test.
Collapse
Affiliation(s)
- Anamon Tangjade
- From the Department of Rehabilitation Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand (AT); Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA (AT, KP-B, FF); Principles and Practice of Clinical Research (PPCR) Program, Harvard T.H. Chan School of Public Health, Harvard Medical School, Boston, Massachusetts, USA (AS, FF); Department of Rehabilitation Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Bangkok, Thailand (AS); Excellent Center for Gait and Motion, King Chulalongkorn Memorial Hospital, Bangkok, Thailand (AS); Interdisplinary Program of Biomedical Engineering, Faculty of Engineering Chulalongkorn University, Bangkok, Thailand (AS); and Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru (KP-B)
| | | | | | | |
Collapse
|
4
|
Li XY, Hu R, Lou TX, Liu Y, Ding L. Global research trends in transcranial magnetic stimulation for stroke (1994-2023): promising, yet requiring further practice. Front Neurol 2024; 15:1424545. [PMID: 39268062 PMCID: PMC11390666 DOI: 10.3389/fneur.2024.1424545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Background Scholars have been committed to investigating stroke rehabilitation strategies over many years. Since its invention, transcranial magnetic stimulation (TMS) has been increasingly employed in contemporary stroke rehabilitation research. Evidence has shown the significant potential of TMS in stroke research and treatment. Objective This article reviews the research conducted on the use of TMS in stroke from 1994 to 2023. This study applied bibliometric analysis to delineate the current research landscape and to anticipate future research hotspots. Method The study utilized the Web of Science Core Collection to retrieve and acquire literature data. Various software tools, including VOSviewer (version 1.6.19), CiteSpace (version 6.3.R1), Scimago Graphica (version 1.0.36), and WPS (version 11572), were used for data analysis and visualization. The review included analyses of countries, institutions, authors, journals, articles, and keywords. Results A total of 3,425 articles were collected. The top three countries in terms of publication output were the United States (953 articles), China (546 articles), and Germany (424 articles). The United States also had the highest citation counts (56,764 citations), followed by Germany (35,211 citations) and the United Kingdom (32,383 citations). The top three institutions based on the number of publications were Harvard University with 138 articles, the University of Auckland with 81 articles, and University College London with 80 articles. The most prolific authors were Abo, Masahiro with 54 articles, Fregni, Felipe with 53 articles, and Pascual-Leone, Alvaro with 50 articles. The top three journals in terms of article count were Neurorehabilitation and Neural Repair with 139 articles, Clinical Neurophysiology with 128 articles, and Frontiers in Neurology with 110 articles. The most frequently occurring keywords were stroke (1,275 occurrences), transcranial magnetic stimulation (1,119 occurrences), and rehabilitation (420 occurrences). Conclusion The application of TMS in stroke research is rapidly gaining momentum, with the USA leading in publications. Prominent institutions, such as Harvard University and University College London, show potential for collaborative research. The key areas of focus include post-stroke cognitive impairment, aphasia, and dysphagia, which are expected to remain significant hotspots in future research. Future research should involve large-scale, randomized, and controlled trials in these fields. Additionally, identifying more effective combined therapies with rTMS should be a priority.
Collapse
Affiliation(s)
- Xin-Yu Li
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Rong Hu
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Tian-Xiao Lou
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Yang Liu
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Ling Ding
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| |
Collapse
|
5
|
Ma J, Qian S, Ma N, Zhang L, Xu L, Liu X, Meng G. Effect of short-term 10 Hz repeated transcranial magnetic stimulation on postural control ability in patients with mild hemiparesis in acute ischemic stroke: a single-blinded randomized controlled trial. Front Neurol 2024; 15:1439904. [PMID: 39206286 PMCID: PMC11350563 DOI: 10.3389/fneur.2024.1439904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Background Previous studies have demonstrated that repetitive transcranial magnetic stimulation (rTMS) can improve postural control in subacute and chronic ischemic stroke, but further research is needed to investigate the effect of rTMS on acute ischemic stroke. Objective We compared the therapeutic effects of rTMS plus conventional rehabilitation and conventional rehabilitation on postural control in patients with mild hemiparesis in acute ischemic stroke. Methods Eighty-six patients with acute ischemic stroke were randomly assigned to either the experimental group or the control group within 1-7 days of onset. Patients in both groups received conventional rehabilitation for 2 weeks. Patients in the experimental group received rTMS treatments lasting for 2 weeks. Before and after the 2-week treatment, patients were assessed based on the Timed up and Go (TUG) test, Dual-Task Walking (DTW) test, Functional Ambulation Category (FAC), Tinetti Performance Oriented Mobility Assessment (POMA), gait kinematic parameters, Barthel Index (BI), Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and National Institutes of Health Stroke Scale (NIHSS). Additionally, TUG and single-task gait velocity were assessed at 2 months after the start of treatment, and independent walking recovery was also followed up. Results After 2 weeks of treatment, compared to conventional rehabilitation, participants who underwent rTMS treatment plus conventional rehabilitation exhibited notable enhancements in TUG, FAC, POMA, and some gait parameters [single-task gait velocity, gait stride length, gait cadence, gait cycle]. Changes in cognitive function partially mediated the improvement in single-task gait velocity and gait stride length by rTMS plus conventional rehabilitation. Generalized Estimating Equation (GEE) analysis showed that the trend of improvement in single-task gait velocity over time was more pronounced in the experimental group than in the control group. The results of the Kaplan-Meier curve indicated a median gait recovery time of 90 days for patients in the experimental group and 100 days for the control group. Multifactorial Cox regression analyses showed that rTMS plus conventional rehabilitation promoted faster recovery of independent walking compared with conventional rehabilitation. Conclusion rTMS plus conventional rehabilitation outperformed conventional rehabilitation in improving postural control in patients with acute ischemic stroke. Improvements in cognitive function may serve as a mediating factor in the favorable treatment outcome of rTMS plus conventional rehabilitation for improving postural control. Clinical trial registration https://www.chictr.org.cn, identifier ChiCTR1900026225.
Collapse
Affiliation(s)
- Jiangping Ma
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyu Qian
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Nuo Ma
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Zhang
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Linghao Xu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guilin Meng
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Chen Y, Xu Z, Liu T, Li D, Tian X, Zheng R, Ma Y, Zheng S, Xing J, Wang W, Sun F. Application of deep brain stimulation and transcranial magnetic stimulation in stroke neurorestoration: A review. JOURNAL OF NEURORESTORATOLOGY 2024; 12:100120. [DOI: 10.1016/j.jnrt.2024.100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
7
|
Moon Y, Yang C, Veit NC, McKenzie KA, Kim J, Aalla S, Yingling L, Buchler K, Hunt J, Jenz S, Shin SY, Kishta A, Edgerton VR, Gerasimenko YP, Roth EJ, Lieber RL, Jayaraman A. Noninvasive spinal stimulation improves walking in chronic stroke survivors: a proof-of-concept case series. Biomed Eng Online 2024; 23:38. [PMID: 38561821 PMCID: PMC10986021 DOI: 10.1186/s12938-024-01231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND After stroke, restoring safe, independent, and efficient walking is a top rehabilitation priority. However, in nearly 70% of stroke survivors asymmetrical walking patterns and reduced walking speed persist. This case series study aims to investigate the effectiveness of transcutaneous spinal cord stimulation (tSCS) in enhancing walking ability of persons with chronic stroke. METHODS Eight participants with hemiparesis after a single, chronic stroke were enrolled. Each participant was assigned to either the Stim group (N = 4, gait training + tSCS) or Control group (N = 4, gait training alone). Each participant in the Stim group was matched to a participant in the Control group based on age, time since stroke, and self-selected gait speed. For the Stim group, tSCS was delivered during gait training via electrodes placed on the skin between the spinous processes of C5-C6, T11-T12, and L1-L2. Both groups received 24 sessions of gait training over 8 weeks with a physical therapist providing verbal cueing for improved gait symmetry. Gait speed (measured from 10 m walk test), endurance (measured from 6 min walk test), spatiotemporal gait symmetries (step length and swing time), as well as the neurophysiological outcomes (muscle synergy, resting motor thresholds via spinal motor evoked responses) were collected without tSCS at baseline, completion, and 3 month follow-up. RESULTS All four Stim participants sustained spatiotemporal symmetry improvements at the 3 month follow-up (step length: 17.7%, swing time: 10.1%) compared to the Control group (step length: 1.1%, swing time 3.6%). Additionally, 3 of 4 Stim participants showed increased number of muscle synergies and/or lowered resting motor thresholds compared to the Control group. CONCLUSIONS This study provides promising preliminary evidence that using tSCS as a therapeutic catalyst to gait training may increase the efficacy of gait rehabilitation in individuals with chronic stroke. Trial registration NCT03714282 (clinicaltrials.gov), registration date: 2018-10-18.
Collapse
Affiliation(s)
- Yaejin Moon
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Exercise Science, Syracuse University, Syracuse, NY, 13057, USA
| | - Chen Yang
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Nicole C Veit
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
- Biomedical Engineering Department, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Kelly A McKenzie
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Jay Kim
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Shreya Aalla
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Lindsey Yingling
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Kristine Buchler
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Jasmine Hunt
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - Sophia Jenz
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sung Yul Shin
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ameen Kishta
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
| | - V Reggie Edgerton
- Rancho Los Amigos National Rehabilitation Center, Broccoli Impossible-to-Possible Lab, Rancho Research Institute, Downy, CA, 90242, USA
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yury P Gerasimenko
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA
- Pavlov Institute of Physiology, St. Petersburg, Russia
| | - Elliot J Roth
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Richard L Lieber
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Hines VA Medical Center, Maywood, IL, 60141, USA
| | - Arun Jayaraman
- Shirley Ryan AbilityLab, 355 E. Erie St, Chicago, IL, 60611, USA.
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
8
|
Wang C, Zhang Q, Zhang L, Zhao D, Xu Y, Liu Z, Wu C, Wu S, Yong M, Wu L. Comparative efficacy of different repetitive transcranial magnetic stimulation protocols for lower extremity motor function in stroke patients: a network meta-analysis. Front Neurosci 2024; 18:1352212. [PMID: 38426021 PMCID: PMC10902063 DOI: 10.3389/fnins.2024.1352212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Background Lower extremity motor dysfunction is one of the most severe consequences after stroke, restricting functional mobility and impairing daily activities. Growing evidence suggests that repetitive transcranial magnetic stimulation (rTMS) can improve stroke patients' lower extremity motor function. However, there is still controversy about the optimal rTMS protocol. Therefore, we compared and analyzed the effects of different rTMS protocols on lower extremity motor function in stroke patients using network meta-analysis (NMA). Methods We systematically searched CNKI, WanFang, VIP, CBM, PubMed, Embase, Web of Science, and Cochrane Library databases (from origin to 31 December 2023). Randomized controlled trials (RCTs) or crossover RCTs on rTMS improving lower extremity motor function in stroke patients were included. Two authors independently completed article screening, data extraction, and quality assessment. RevMan (version 5.4) and Stata (version 17.0) were used to analyze the data. Results A total of 38 studies with 2,022 patients were eligible for the NMA. The interventions included HFrTMS-M1, LFrTMS-M1, iTBS-Cerebellum, iTBS-M1, dTMS-M1, and Placebo. The results of NMA showed that LFrTMS-M1 ranked first in FMA-LE and speed, and HFrTMS-M1 ranked first in BBS, TUGT, and MEP amplitude. The subgroup analysis of FMA-LE showed that HFrTMS-M1 was the best stimulation protocol for post-stroke time > 1 month, and LFrTMS-M1 was the best stimulation protocol for post-stroke time ≤ 1 month. Conclusion Considering the impact of the stroke phase on the lower extremity motor function, the current research evidence shows that HFrTMS-M1 may be the preferred stimulation protocol to improve the lower extremity motor function of patients for post-stroke time > 1 month, and LFrTMS-M1 for post-stroke time ≤ 1 month. However, the above conclusion needs further analysis and validation by more high-quality RCTs.Systematic Review Registration:www.crd.york.ac.uk/prospero/, identifier (CRD42023474215).
Collapse
Affiliation(s)
- Chengshuo Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
- Beijing Xiaotangshan Hospital, Beijing, China
| | - Qin Zhang
- Beijing Xiaotangshan Hospital, Beijing, China
| | - Linli Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | | | - Yanan Xu
- Beijing Xiaotangshan Hospital, Beijing, China
| | - Zejian Liu
- Beijing Xiaotangshan Hospital, Beijing, China
| | - Chunli Wu
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Shengzhu Wu
- Department of Rehabilitation Medicine, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Mingjin Yong
- Department of Rehabilitation, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Liang Wu
- Beijing Xiaotangshan Hospital, Beijing, China
| |
Collapse
|
9
|
Chamorro-Hinojosa JA, Molina-Rueda F, Carratalá-Tejada M. Transcranial Direct Current Stimulation in the Treatment of Gait Disturbance in Post-Stroke Patients: An Overview of Systematic Reviews. SENSORS (BASEL, SWITZERLAND) 2023; 23:9301. [PMID: 38067673 PMCID: PMC10708691 DOI: 10.3390/s23239301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023]
Abstract
INTRODUCTION Transcranial direct current stimulation (tDCS) is a promising technique for brain modulation after a cerebrovascular accident (CVA). This treatment modality has been previously studied in the recovery of patients. The aim of this review is to analyse the evidence for the application of tDCS in the recovery of gait disturbance in stroke patients. METHODS This review was conducted according to the recommendations of the PRISMA statement. Three different electronic databases were searched for relevant results: PubMed, Scopus, and Cochrane, from 2015 to January 2022. We included reviews and meta-analyses that only considered randomised controlled trials (RCTs) that investigated the effects of transcranial direct current stimulation, in combination or not with other physiotherapy treatments, compared to no treatment, usual care, or alternative treatment on gait recovery. Our primary outcomes of interest were walking speed, mobility, and endurance; secondary outcomes included motor function. RESULTS Thirteen studies with a total of 195 RCTs were included. Data on population, outcome measures, protocols, and outcomes were extracted. The Amstar-2 scale and the GRADE system of certainty of evidence were used. Only one study received high certainty of evidence, 5 received low certainty of evidence, and 7 received critically low certainty of evidence. Moderate to low-quality evidence showed a beneficial effect of tDCS on gait parameters, but not significantly. CONCLUSIONS Although the tDCS produces positive changes in gait recovery in spatio-temporal parameters such as mobility, endurance, strength, and motor function, there is insufficient evidence to recommend this treatment. Higher-quality studies with larger sample sizes are needed for stronger conclusions.
Collapse
Affiliation(s)
| | - Francisco Molina-Rueda
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Alcorcón, Spain;
| | - María Carratalá-Tejada
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Alcorcón, Spain;
| |
Collapse
|
10
|
Zhou L, Jin Y, Wu D, Cun Y, Zhang C, Peng Y, Chen N, Yang X, Zhang S, Ning R, Kuang P, Wang Z, Zhang P. Current evidence, clinical applications, and future directions of transcranial magnetic stimulation as a treatment for ischemic stroke. Front Neurosci 2023; 17:1177283. [PMID: 37534033 PMCID: PMC10390744 DOI: 10.3389/fnins.2023.1177283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive brain neurostimulation technique that can be used as one of the adjunctive treatment techniques for neurological recovery after stroke. Animal studies have shown that TMS treatment of rats with middle cerebral artery occlusion (MCAO) model reduced cerebral infarct volume and improved neurological dysfunction in model rats. In addition, clinical case reports have also shown that TMS treatment has positive neuroprotective effects in stroke patients, improving a variety of post-stroke neurological deficits such as motor function, swallowing, cognitive function, speech function, central post-stroke pain, spasticity, and other post-stroke sequelae. However, even though numerous studies have shown a neuroprotective effect of TMS in stroke patients, its possible neuroprotective mechanism is not clear. Therefore, in this review, we describe the potential mechanisms of TMS to improve neurological function in terms of neurogenesis, angiogenesis, anti-inflammation, antioxidant, and anti-apoptosis, and provide insight into the current clinical application of TMS in multiple neurological dysfunctions in stroke. Finally, some of the current challenges faced by TMS are summarized and some suggestions for its future research directions are made.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yongdan Cun
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Chengcai Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yicheng Peng
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Na Chen
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xichen Yang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Simei Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Rong Ning
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Peng Kuang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zuhong Wang
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
11
|
Jin J, Wang X, Wang H, Li Y, Liu Z, Yin T. Train duration and inter-train interval determine the direction and intensity of high-frequency rTMS after-effects. Front Neurosci 2023; 17:1157080. [PMID: 37476832 PMCID: PMC10355321 DOI: 10.3389/fnins.2023.1157080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Background and objective It has been proved that repetitive transcranial magnetic stimulation (rTMS) triggers the modulation of homeostatic metaplasticity, which causes the effect of rTMS to disappear or even reverse, and a certain length of interval between rTMS trains might break the modulation of homeostatic metaplasticity. However, it remains unknown whether the effects of high-frequency rTMS can be modulated by homeostatic metaplasticity by lengthening the train duration and whether homeostatic metaplasticity can be broken by prolonging the inter-train interval. Methods In this study, 15 subjects participated in two experiments including different rTMS protocols targeting the motor cortex. In the first experiment, high-frequency rTMS protocols with different train durations (2 s and 5 s) and an inter-train interval of 25 s were adopted. In the second experiment, high-frequency rTMS protocols with a train duration of 5 s and different inter-train intervals (50 s and 100 s) were adopted. A sham protocol was also included. Changes of motor evoked potential amplitude acquired from electromyography, power spectral density, and intra-region and inter-region functional connectivity acquired from electroencephalography in the resting state before and after each rTMS protocol were evaluated. Results High-frequency rTMS with 2 s train duration and 25 s inter-train interval increased cortex excitability and the power spectral density of bilateral central regions in the alpha frequency band and enhanced the functional connectivity between central regions and other brain regions. When the train duration was prolonged to 5 s, the after-effects of high-frequency rTMS disappeared. The after-effects of rTMS with 5 s train duration and 100 s inter-train interval were the same as those of rTMS with 2 s train duration and 25 s inter-train interval. Conclusion Our results indicated that train duration and inter-train interval could induce the homeostatic metaplasticiy and determine the direction of intensity of rTMS after-effects, and should certainly be taken into account when performing rTMS in both research and clinical practice.
Collapse
Affiliation(s)
- Jingna Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - He Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Vallejo P, Cueva E, Martínez-Lozada P, García-Ríos CA, Miranda-Barros DH, Leon-Rojas JE. Repetitive Transcranial Magnetic Stimulation in Stroke: A Literature Review of the Current Role and Controversies of Neurorehabilitation Through Electromagnetic Pulses. Cureus 2023; 15:e41714. [PMID: 37575778 PMCID: PMC10414689 DOI: 10.7759/cureus.41714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective method used for the treatment of various neurological diseases, including stroke, epilepsy, and movement disorders. The pathophysiological mechanism for the effect of TMS is not clear. In this literature review, we conducted a detailed search regarding the effect of rTMS on neurotransmission and neuronal plasticity through the modulation of neuronal excitability. Evidence suggests that intramolecular subatomic mechanisms, including genetic changes related to neuronal prevention and death, play an important role. We also discuss the use of rTMS in the rehabilitation of patients with stroke and its main complications, as well as alternative mechanisms related to recovery, emphasizing the findings of available evidence and touching on possible controversies and limitations of the method.
Collapse
Affiliation(s)
- Paula Vallejo
- Medical School, Universidad de Las Américas, Quito, ECU
- Medical Research Department, NeurALL Research Group, Quito, ECU
| | - Emily Cueva
- Medical Research Department, NeurALL Research Group, Quito, ECU
| | | | | | | | - Jose E Leon-Rojas
- Neurological Surgery, Universidad de Las Américas, Quito, ECU
- Medical Research Department, NeurALL Research Group, Quito, ECU
- Research and Development Department, Medignosis, Quito, ECU
| |
Collapse
|
13
|
Sheng R, Chen C, Chen H, Yu P. Repetitive transcranial magnetic stimulation for stroke rehabilitation: insights into the molecular and cellular mechanisms of neuroinflammation. Front Immunol 2023; 14:1197422. [PMID: 37283739 PMCID: PMC10239808 DOI: 10.3389/fimmu.2023.1197422] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Stroke is a leading cause of mortality and disability worldwide, with most survivors reporting dysfunctions of motor, sensation, deglutition, cognition, emotion, and speech, etc. Repetitive transcranial magnetic stimulation (rTMS), one of noninvasive brain stimulation (NIBS) techniques, is able to modulate neural excitability of brain regions and has been utilized in neurological and psychiatric diseases. Moreover, a large number of studies have shown that the rTMS presents positive effects on function recovery of stroke patients. In this review, we would like to summarized the clinical benefits of rTMS for stroke rehabilitation, including improvements of motor impairment, dysphagia, depression, cognitive function, and central post-stroke pain. In addition, this review will also discuss the molecular and cellular mechanisms underlying rTMS-mediated stroke rehabilitation, especially immune regulatory mechanisms, such as regulation of immune cells and inflammatory cytokines. Moreover, the neuroimaging technique as an important tool in rTMS-mediated stroke rehabilitation has been discussed, to better understanding the mechanisms underlying the effects of rTMS. Finally, the current challenges and future prospects of rTMS-mediated stroke rehabilitation are also elucidated with the intention to accelerate its widespread clinical application.
Collapse
Affiliation(s)
- Rongjun Sheng
- Department of Radiology, The First People’s Hospital of Linping District, Hangzhou, China
| | - Changchun Chen
- Department of Radiology, The People’s Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Guizhou, China
| | - Huan Chen
- Department of Radiology, The People’s Hospital of Longyou, Quzhou, China
| | - Peipei Yu
- Department of Radiology, Sanmen People’s Hospital, Taizhou, China
| |
Collapse
|
14
|
Moore SA, Boyne P, Fulk G, Verheyden G, Fini NA. Walk the Talk: Current Evidence for Walking Recovery After Stroke, Future Pathways and a Mission for Research and Clinical Practice. Stroke 2022; 53:3494-3505. [PMID: 36069185 PMCID: PMC9613533 DOI: 10.1161/strokeaha.122.038956] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Achieving safe, independent, and efficient walking is a top priority for stroke survivors to enable quality of life and future health. This narrative review explores the state of the science in walking recovery after stroke and potential for development. The importance of targeting walking capacity and performance is explored in relation to individual stroke survivor gait recovery, applying a common language, measurement, classification, prediction, current and future intervention development, and health care delivery. Findings are summarized in a model of current and future stroke walking recovery research and a mission statement is set for researchers and clinicians to drive the field forward to improve the lives of stroke survivors and their carers.
Collapse
Affiliation(s)
- Sarah A Moore
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK, and Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom (S.A.M.)
| | - Pierce Boyne
- Department of Rehabilitation Exercise and Nutritional Science, University of Cincinnati, OH (P.B.)
| | - George Fulk
- Department of Rehabilitation Medicine, Emory University, Atlanta, GA (G.F.)
| | - Geert Verheyden
- Department of Rehabilitation Sciences, KU Leuven, University of Leuven, Belgium (G.V.)
| | - Natalie A Fini
- Medicine Dentistry and Health Sciences, The University of Melbourne, Australia (N.A.F.)
| |
Collapse
|
15
|
Chen G, Wu M, Lin T, Cai G, Xu J, Ding Q, Li W, Wu C, Chen H, Lan Y. Effects of repetitive transcranial magnetic stimulation on sequelae in patients with chronic stroke: A systematic review and meta-analysis of randomized controlled trials. Front Neurosci 2022; 16:998820. [PMID: 36340781 PMCID: PMC9630949 DOI: 10.3389/fnins.2022.998820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
Background Stroke is the second leading cause of death worldwide, with a large proportion of survivors suffering from motor dysfunction and neuropsychiatric sequelae. Repetitive transcranial magnetic stimulation (rTMS) is a promising stroke rehabilitation intervention and is effective in improving neurological system function in stroke patients. In the current systemic review and meta-analysis, an overview of the most recent studies regarding the effectiveness of rTMS's potential to help chronic stroke patients recover from sequelae was provided. Methods Relevant randomized controlled trials were retrieved from three online databases (Web of Science, Medline, and Embase). A total of 25 RCTs (N = 535 participants) were included. A meta-analysis was performed using a fixed-effects model or a random-effects model, and effect sizes were reported as weighted mean differences or standardized mean differences. Results Administration of rTMS significantly improved upper limb function, hand function, and muscle tone in stroke patients throughout the chronic phase [≥6 months], but not lower limb mobility and strength. In terms of cognitive function, rTMS has a considerable positive impact on patients' cognitive performance. rTMS also alleviated apathy in stroke patients more than post-stroke depressive symptoms regarding mental functioning. Balance and walking function, as well as functional activities of daily living, of patients were dramatically improved by rTMS. However, the current conclusions should be taken carefully due to the small sample size of the meta-analysis. Conclusions This is the first meta-analysis of rTMS treatment in patients with chronic stroke to inform the selection of the optimal treatment strategy for patients with chronic stroke, which demonstrated that rTMS treatment has the potential to improve the effects of sequelae by improving upper limb function, hand function, and muscle tone. Systematic review registration https://inplasy.com/inplasy-2022-7-0095/, identifier: INPLASY202270095.
Collapse
Affiliation(s)
- Gengbin Chen
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Manfeng Wu
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Tuo Lin
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guiyuan Cai
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiayue Xu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qian Ding
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wanqi Li
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Cheng Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hongying Chen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Guangzhou Key Laboratory of Aging Frailty and Neurorehabilitation, Guangzhou, China
- *Correspondence: Yue Lan
| |
Collapse
|
16
|
Kuwahara W, Sasaki S, Yamamoto R, Kawakami M, Kaneko F. The effects of robot-assisted gait training combined with non-invasive brain stimulation on lower limb function in patients with stroke and spinal cord injury: A systematic review and meta-analysis. Front Hum Neurosci 2022; 16:969036. [PMID: 36051968 PMCID: PMC9426300 DOI: 10.3389/fnhum.2022.969036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Objective: This study aimed to investigate the effect of robot-assisted gait training (RAGT) therapy combined with non-invasive brain stimulation (NIBS) on lower limb function in patients with stroke and spinal cord injury (SCI). Data sources PubMed, Cochrane Central Register of Controlled Trials, Ovid MEDLINE, and Web of Science were searched. Study selection Randomized controlled trials (RCTs) published as of 3 March 2021. RCTs evaluating RAGT combined with NIBS, such as transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), for lower limb function (e.g., Fugl-Meyer assessment for patients with stroke) and activities (i.e., gait velocity) in patients with stroke and SCI were included. Data extraction Two reviewers independently screened the records, extracted the data, and assessed the risk of bias. Data synthesis A meta-analysis of five studies (104 participants) and risk of bias were conducted. Pooled estimates demonstrated that RAGT combined with NIBS significantly improved lower limb function [standardized mean difference (SMD) = 0.52; 95% confidence interval (CI) = 0.06–0.99] but not lower limb activities (SMD = −0.13; 95% CI = −0.63–0.38). Subgroup analyses also failed to find a greater improvement in lower limb function of RAGT with tDCS compared to sham stimulation. No significant differences between participant characteristics or types of NIBS were observed. Conclusion This meta-analysis demonstrated that RAGT therapy in combination with NIBS was effective in patients with stroke and SCI. However, a greater improvement in lower limb function and activities were not observed using RAGT with tDCS compared to sham stimulation.
Collapse
Affiliation(s)
- Wataru Kuwahara
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Shun Sasaki
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Rieko Yamamoto
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Artificial Environment, Safety, Environment and System Engineering, Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Fuminari Kaneko
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- *Correspondence: Fuminari Kaneko
| |
Collapse
|
17
|
Zhou J, Chen Y, Gin T, Bao D, Zhou J. The effects of repetitive transcranial magnetic stimulation on standing balance and walking in older adults with age-related neurological disorders: a systematic review and meta-analysis. J Gerontol A Biol Sci Med Sci 2022; 78:842-852. [PMID: 35921153 PMCID: PMC10172986 DOI: 10.1093/gerona/glac158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Considerable evidence showed that repetitive transcranial magnetic stimulation (rTMS) can improve standing balance and walking performance in older adults with age-related neurological disorders. We here thus completed a systematic review and meta-analysis to quantitatively examine such benefits of rTMS. METHODS A search strategy based on the PICOS principle was used to obtain the literature in four databases. The screening and assessments of quality and risk of bias in the included studies were independently completed by two researchers. Outcomes included scales related to standing balance, Timed Up and Go (TUG) time, and walking speed/time/distance. RESULTS Twenty-three studies consisting of 532 participants were included, and the meta-analysis was completed on 21 of these studies. The study quality was good. Compared to control, rTMS induced both short-term (≤3 days after last intervention session) and long-term (≥1 month following last intervention session) significant improvements in balance scales (e.g., Berg Balance Scale), TUG time, and walking speed/time/distance (short-term: standardized mean difference [SMD]=0.26~0.34, 95% confidence interval [CI]=0.05~0.62; long-term: SMD=0.40~0.44, 95% CI=0.04~0.79) for both PD and stroke cohorts. Subgroup analyses suggested that greater than nine sessions of high-frequency rTMS targeting primary motor cortex with greater than 3000 pulses per week can maximize such benefits. Only few mild-to-moderate adverse events/side effects were reported, which were similar between rTMS and control group. CONCLUSION The results suggest that rTMS holds promise to improve balance and walking performance in older adults with age-related neurological disorders. Future studies with more rigorous design are needed to confirm the observations in this work.
Collapse
Affiliation(s)
- Jun Zhou
- China Athletics College, Beijing Sport University, Beijing, China
| | - Yan Chen
- Sports Coaching College, Beijing Sport University, Beijing, China
| | - Trenton Gin
- Cornell University, Ithaca, New York, NY, United States
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Junhong Zhou
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Wang L, Huang G, Zhang L, Yang J, Ren C, Liang C, Shen Y, Su B. Effects of the Intermittent Theta Burst Stimulation of the Cerebellar Vermis on Balance Recovery After Stroke: A Study Protocol for a Randomized Controlled Trial. Front Aging Neurosci 2022; 14:881311. [PMID: 35572148 PMCID: PMC9099377 DOI: 10.3389/fnagi.2022.881311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background The recovery of balance function is a critical segment in the rehabilitation treatment of stroke. The cerebellum is considered as the key structure involved in balance and motor control. The cerebellar vermis plays an important role in integrating vision, proprioception, and sensory skin input and may be a candidate stimulation target for regulating the motor network related with balance. However, evidence that the intermittent theta burst stimulation (iTBS) of cerebellar vermis can promote the recovery of balance function after stroke remains insufficient. Therefore, this study aims to explore the efficacy of the cerebellar vermis iTBS for the treatment of balance function in patients with stroke. Methods and Analysis Forty patients with stroke will be recruited in this prospective, randomized, sham-controlled trial. Participants will be randomized in a 1:1 ratio to receive either 15 sessions of cerebellar vermis iTBS (600 pulses) or sham stimulation. Additionally, a routine rehabilitation therapy follows the intervention. The primary outcome is the Berg Balance Scale, and the secondary outcomes are the Fugl–Meyer assessment of the lower extremity and modified Barthel index. The above outcomes will be assessed before intervention and at the end of each week. Pre- and post-iTBS resting-state functional magnetic resonance imaging (rs-fMRI) will be acquired, and the regional homogeneity, fractional amplitude of low-frequency fluctuation and functional connectivity will be calculated and analyzed. Discussion This protocol holds promise as a potential method to improve balance function in patients with stroke. If the outcomes of patients improve after the intervention, the study will provide new insights into improving balance function. Ethics and Dissemination This study has been approved by the Medical Research Ethics Committee of Wuxi Mental Health Center (Wuxi Tongren Rehabilitation Hospital). Results will be disseminated through (open-access) peer-reviewed publications, networks of scientists, professionals, and the public and presented at conferences. Clinical Trial Registration Number www.chictr.org.cn, identifier ChiCTR2100052590.
Collapse
Affiliation(s)
- Lin Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Guilan Huang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Li Zhang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Jinyu Yang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Caili Ren
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Chengpan Liang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ying Shen,
| | - Bin Su
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- Bin Su,
| |
Collapse
|
19
|
Xie YJ, Chen Y, Tan HX, Guo QF, Lau BWM, Gao Q. Repetitive transcranial magnetic stimulation for lower extremity motor function in patients with stroke: a systematic review and network meta-analysis. Neural Regen Res 2021; 16:1168-1176. [PMID: 33269766 PMCID: PMC8224108 DOI: 10.4103/1673-5374.300341] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcranial magnetic stimulation, a type of noninvasive brain stimulation, has become an ancillary therapy for motor function rehabilitation. Most previous studies have focused on the effects of repetitive transcranial magnetic stimulation (rTMS) on motor function in stroke patients. There have been relatively few studies on the effects of different modalities of rTMS on lower extremity motor function and corticospinal excitability in patients with stroke. The MEDLINE, Embase, Cochrane Library, ISI Science Citation Index, Physiotherapy Evidence Database, China National Knowledge Infrastructure Library, and ClinicalTrials.gov databases were searched. Parallel or crossover randomized controlled trials that addressed the effectiveness of rTMS in patients with stroke, published from inception to November 28, 2019, were included. Standard pairwise meta-analysis was conducted using R version 3.6.1 with the “meta” package. Bayesian network analysis using the Markov chain Monte Carlo algorithm was conducted to investigate the effectiveness of different rTMS protocol interventions. Network meta-analysis results of 18 randomized controlled trials regarding lower extremity motor function recovery revealed that low-frequency rTMS had better efficacy in promoting lower extremity motor function recovery than sham stimulation. Network meta-analysis results of five randomized controlled trials demonstrated that high-frequency rTMS led to higher amplitudes of motor evoked potentials than low-frequency rTMS or sham stimulation. These findings suggest that rTMS can improve motor function in patients with stroke, and that low-frequency rTMS mainly affects motor function, whereas high-frequency rTMS increases the amplitudes of motor evoked potentials. More high-quality randomized controlled trials are needed to validate this conclusion. The work was registered in PROSPERO (registration No. CRD42020147055) on April 28, 2020.
Collapse
Affiliation(s)
- Yun-Juan Xie
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Chen
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hui-Xin Tan
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qi-Fan Guo
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Qiang Gao
- Department of Rehabilitation Medicine; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
20
|
Diep D, Lam ACL, Ko G. A Review of the Evidence and Current Applications of Portable Translingual Neurostimulation Technology. Neuromodulation 2020; 24:1377-1387. [PMID: 32881193 DOI: 10.1111/ner.13260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/12/2020] [Accepted: 07/25/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Translingual neurostimulation (TLNS) with adjunct physical rehabilitation is used to treat balance and gait deficits in several chronic neurological conditions. The purpose of this review is to summarize and appraise the evidence currently available on the portable TLNS device and to assess its potential clinical application. MATERIALS AND METHODS In this narrative review, MEDLINE, EMBASE, Web of Science, and Google Scholar were searched for primary research investigating the use of portable TLNS devices on any neurologic condition. Data were extracted, reviewed, and appraised with respect to study design, conduct, and reporting. RESULTS Five randomized controlled trials (RCTs), three quasi-experimental trials, and seven case reports/series were found. Most studies demonstrated improvements in balance and gait deficits secondary to traumatic brain injury and multiple sclerosis, but evidence is also present to a lesser degree for stroke and balance disorder patients. In these studies, the feasibility and safety of TLNS have been convincingly demonstrated. Functional magnetic resonance studies have also suggested a plausible neuroplastic therapeutic mechanism. However, the efficacy of TLNS remains unclear due to bias and confounding within studies, and heterogeneity of results between studies. CONCLUSIONS TLNS is a promising treatment modality for various chronic neurological conditions that are often refractory to conventional therapy. However, TLNS technology remains largely investigational as high-quality RCTs are still required to elucidate efficacy, optimal dosages, necessary treatment durations, and treatment durability. Further research to develop an appropriate control group is needed for scientifically valid comparisons of TLNS.
Collapse
Affiliation(s)
- Dion Diep
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrew C L Lam
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Gordon Ko
- Canadian Centre for Integrative Medicine, Markham, ON, Canada.,Division of Physical Medicine & Rehabilitation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Division of Physical Medicine & Rehabilitation, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Fisicaro F, Lanza G, Grasso AA, Pennisi G, Bella R, Paulus W, Pennisi M. Repetitive transcranial magnetic stimulation in stroke rehabilitation: review of the current evidence and pitfalls. Ther Adv Neurol Disord 2019. [PMID: 31598137 DOI: 10.1177/1756286419878317.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Acute brain ischemia causes changes in several neural networks and related cortico-subcortical excitability, both in the affected area and in the apparently spared contralateral hemisphere. The modulation of these processes through modern techniques of noninvasive brain stimulation, namely repetitive transcranial magnetic stimulation (rTMS), has been proposed as a viable intervention that could promote post-stroke clinical recovery and functional independence. This review provides a comprehensive summary of the current evidence from the literature on the efficacy of rTMS applied to different clinical and rehabilitative aspects of stroke patients. A total of 32 meta-analyses published until July 2019 were selected, focusing on the effects on motor function, manual dexterity, walking and balance, spasticity, dysphagia, aphasia, unilateral neglect, depression, and cognitive function after a stroke. Only conventional rTMS protocols were considered in this review, and meta-analyses focusing on theta burst stimulation only were excluded. Overall, both HF-rTMS and LF-rTMS have been shown to be safe and well-tolerated. In addition, the current literature converges on the positive effect of rTMS in the rehabilitation of all clinical manifestations of stroke, except for spasticity and cognitive impairment, where definitive evidence of efficacy cannot be drawn. However, routine use of a specific paradigm of stimulation cannot be recommended yet due to a significant level of heterogeneity of the studies in terms of protocols to be set and outcome measures that have to be used. Future studies need to preliminarily evaluate the most promising protocols before going on to multicenter studies with large cohorts of patients in order to achieve a definitive translation into daily clinical practice.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia, 78, Catania, 95125, Italy
| | - Alfio Antonio Grasso
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Catania, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
22
|
Kang N, Lee RD, Lee JH, Hwang MH. Functional Balance and Postural Control Improvements in Patients With Stroke After Noninvasive Brain Stimulation: A Meta-analysis. Arch Phys Med Rehabil 2019; 101:141-153. [PMID: 31568760 DOI: 10.1016/j.apmr.2019.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/22/2019] [Accepted: 09/05/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVES The postural imbalance poststroke limits individuals' walking abilities as well as increase the risk of falling. We investigated the short-term treatment effects of noninvasive brain stimulation (NIBS) on functional balance and postural control in patients with stroke. DATA SOURCES We started the search via PubMed and the Institute for Scientific Information's Web of Science on March 1, 2019 and concluded the search on April 30, 2019. STUDY SELECTION The meta-analysis included studies that used either repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) for the recovery of functional balance and postural control poststroke. All included studies used either randomized controlled trial or crossover designs with a sham control group. DATA EXTRACTION Three researchers independently performed data extraction and assessing methodological quality and publication bias. We calculated overall and individual effect sizes using random effects meta-analysis models. DATA SYNTHESIS The random effects meta-analysis model on the 18 qualified studies identified the significant positive effects relating to NIBS in terms of functional balance and postural control poststroke. The moderator-variable analyses revealed that these treatment effects were only significant in rTMS across patients with acute, subacute, and chronic stroke whereas tDCS did not show any significant therapeutic effects. The meta-regression analysis showed that a higher number of rTMS sessions was significantly associated with more improvements in functional balance and postural control poststroke. CONCLUSIONS Our systematic review and meta-analysis confirmed that NIBS may be an effective option for restoring functional balance and postural control for patients with stroke.
Collapse
Affiliation(s)
- Nyeonju Kang
- From the Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea; Department of Human Movement Science, Incheon National University, Incheon, South Korea.
| | - Ru Da Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
| | - Joon Ho Lee
- From the Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea; Department of Human Movement Science, Incheon National University, Incheon, South Korea
| | - Moon Hyon Hwang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Division of Health and Kinesiology, Incheon National University, Incheon, South Korea
| |
Collapse
|
23
|
Fisicaro F, Lanza G, Grasso AA, Pennisi G, Bella R, Paulus W, Pennisi M. Repetitive transcranial magnetic stimulation in stroke rehabilitation: review of the current evidence and pitfalls. Ther Adv Neurol Disord 2019; 12:1756286419878317. [PMID: 31598137 PMCID: PMC6763938 DOI: 10.1177/1756286419878317] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/28/2019] [Indexed: 02/05/2023] Open
Abstract
Acute brain ischemia causes changes in several neural networks and related cortico-subcortical excitability, both in the affected area and in the apparently spared contralateral hemisphere. The modulation of these processes through modern techniques of noninvasive brain stimulation, namely repetitive transcranial magnetic stimulation (rTMS), has been proposed as a viable intervention that could promote post-stroke clinical recovery and functional independence. This review provides a comprehensive summary of the current evidence from the literature on the efficacy of rTMS applied to different clinical and rehabilitative aspects of stroke patients. A total of 32 meta-analyses published until July 2019 were selected, focusing on the effects on motor function, manual dexterity, walking and balance, spasticity, dysphagia, aphasia, unilateral neglect, depression, and cognitive function after a stroke. Only conventional rTMS protocols were considered in this review, and meta-analyses focusing on theta burst stimulation only were excluded. Overall, both HF-rTMS and LF-rTMS have been shown to be safe and well-tolerated. In addition, the current literature converges on the positive effect of rTMS in the rehabilitation of all clinical manifestations of stroke, except for spasticity and cognitive impairment, where definitive evidence of efficacy cannot be drawn. However, routine use of a specific paradigm of stimulation cannot be recommended yet due to a significant level of heterogeneity of the studies in terms of protocols to be set and outcome measures that have to be used. Future studies need to preliminarily evaluate the most promising protocols before going on to multicenter studies with large cohorts of patients in order to achieve a definitive translation into daily clinical practice.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia, 78, Catania, 95125, Italy
- Department of Neurology IC, Oasi Research Institute – IRCCS, Troina, Italy
| | - Alfio Antonio Grasso
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Catania, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
24
|
Zheng QX, Ge L, Wang CC, Ma QS, Liao YT, Huang PP, Wang GD, Xie QL, Rask M. Robot-assisted therapy for balance function rehabilitation after stroke: A systematic review and meta-analysis. Int J Nurs Stud 2019; 95:7-18. [DOI: 10.1016/j.ijnurstu.2019.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
|
25
|
Abstract
Stroke, or cerebrovascular accident, involves injury to the central nervous system as a result of a vascular cause, and is a leading cause of disability worldwide. People with stroke often experience sensory, cognitive, and motor sequelae that can lead to difficulty walking, controlling balance in standing and voluntary tasks, and reacting to prevent a fall following an unexpected postural perturbation. This chapter discusses the interrelationships between stroke-related impairments, problems with control of balance and gait, fall risk, fear of falling, and participation in daily physical activity. Rehabilitation can improve balance and walking function, and consequently independence and quality of life, for those with stroke. This chapter also describes effective interventions for improving balance and walking function poststroke, and identifies some areas for further research in poststroke rehabilitation.
Collapse
Affiliation(s)
- Avril Mansfield
- Toronto Rehabilitation Institute, University Health Network and Department of Physical Therapy, University of Toronto, Toronto, ON, Canada.
| | - Elizabeth L Inness
- Toronto Rehabilitation Institute, University Health Network and Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - William E Mcilroy
- Department of Kinesiology, University of Waterloo and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Waterloo, ON, Canada
| |
Collapse
|