1
|
Sassani M, Ghafari T, Arachchige PRW, Idrees I, Gao Y, Waitt A, Weaver SRC, Mazaheri A, Lyons HS, Grech O, Thaller M, Witton C, Bagshaw AP, Wilson M, Park H, Brookes M, Novak J, Mollan SP, Hill LJ, Lucas SJE, Mitchell JL, Sinclair AJ, Mullinger K, Fernández-Espejo D. Current and prospective roles of magnetic resonance imaging in mild traumatic brain injury. Brain Commun 2025; 7:fcaf120. [PMID: 40241788 PMCID: PMC12001801 DOI: 10.1093/braincomms/fcaf120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/26/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
There is unmet clinical need for biomarkers to predict recovery or the development of long-term sequelae of mild traumatic brain injury, a highly prevalent condition causing a constellation of disabling symptoms. A substantial proportion of patients live with long-lasting sequelae affecting their quality of life and ability to work. At present, symptoms can be assessed through clinical tests; however, there are no imaging or laboratory tests fully reflective of pathophysiology routinely used by clinicians to characterize post-concussive symptoms. Magnetic resonance imaging has potential to link subtle pathophysiological alterations to clinical outcomes. Here, we review the state of the art of MRI research in adults with mild traumatic brain injury and provide recommendations to facilitate transition into clinical practice. Studies utilizing MRI can inform on pathophysiology of mild traumatic brain injury. They suggest presence of early cytotoxic and vasogenic oedema. They also show that mild traumatic brain injury results in cellular injury and microbleeds affecting the integrity of myelin and white matter tracts, all processes that appear to induce delayed vascular reactions and functional changes. Crucially, correlates between MRI parameters and post-concussive symptoms are emerging. Clinical sequences such as T1-weighted MRI, susceptibility-weighted MRI or fluid attenuation inversion recovery could be easily implementable in clinical practice, but are not sufficient, in isolation for prognostication. Diffusion sequences have shown promises and, although in need of analysis standardization, are a research priority. Lastly, arterial spin labelling is emerging as a high-utility research as it could become useful to assess delayed neurovascular response and possible long-term symptoms.
Collapse
Affiliation(s)
- Matilde Sassani
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Tara Ghafari
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Pradeepa R W Arachchige
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Iman Idrees
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Yidian Gao
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Alice Waitt
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Samuel R C Weaver
- Centre for Human Brain Health and School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ali Mazaheri
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Hannah S Lyons
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Olivia Grech
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Mark Thaller
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Caroline Witton
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Andrew P Bagshaw
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Hyojin Park
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Matthew Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jan Novak
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Susan P Mollan
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Birmingham Neuro-ophthalmology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust Birmingham, Birmingham B15 2WB, UK
| | - Lisa J Hill
- Department of Biomedical Sciences, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Samuel J E Lucas
- Centre for Human Brain Health and School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - James L Mitchell
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Alexandra J Sinclair
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Karen Mullinger
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Davinia Fernández-Espejo
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Mueller SG, Garga N, Garcia P, Rossi S, Vu A, Neylan T, Laxer KD. The imprint of dissociative seizures on the brain. Neuroimage Clin 2024; 43:103664. [PMID: 39226702 PMCID: PMC11403518 DOI: 10.1016/j.nicl.2024.103664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Increased resting state functional connectivity between regions involved in emotion control with regions with other specializations, e.g. motor control (emotional hyperconnectivity) is one of the most consistent imaging findings in persons suffering from dissociative seizures (DS). The overall goal of this study was to better characterize DS-related emotional hyperconnectivity using dynamic resting state analysis combined with brainstem volumetry to investigate 1. If emotional hyperconnectivity is restricted to a single state. 2. How volume losses within the modulatory and emotional motor subnetworks of the neuromodulatory system influence the expression of the emotional hyperconnectivity. METHODS 13 persons with dissociative seizures (PDS) (f/m:10/3, mean age (SD) 44.6 (11.5)) and 15 controls (CON) (f/m:10/5, mean age (SD) 41.7 (13.0)) underwent a mental health test battery and structural and functional imaging at 3 T. Deformation based morphometry was used to assess brain volume loss by extracting the mean Jacobian determinants from 457 brain, forebrain and brainstem structures. The bold signals from 445 brainstem and brain rois were extracted with CONN and a dynamic fMRI analysis combined with graph and hierarchical analysis was used to identify and characterize 9 different brain states. Welch's t tests and Kendall tau tests were used for group comparisons and correlation analyses. RESULTS The duration of Brain state 6 was longer in PDS than in CON (93.1(88.3) vs. 23.4(31.2), p = 0.01) and positively correlated with higher degrees of somatization, depression, PTSD severity and dissociation. Its global connectivity was higher in PDS than CON (90.4(3.2) vs 86.5(4.2) p = 0.01) which was caused by an increased connectivity between regions involved in emotion control and regions involved in sense of agency/body control. The brainstem and brainstem-forebrain modulatory and emotional motor subnetworks of the neuromodulatory system were atrophied in PDS. Atrophy severity within the brainstem-forebrain subnetworks was correlated with state 6 dwell time (modulatory: tau = -0.295, p = 0.03; emotional motor: tau = -0.343, p = 0.015) and atrophy severity within the brainstem subnetwork with somatization severity (modulatory: tau = -0.25, p = 0.036; emotional motor: tau = -0.256, p = 0.033). CONCLUSION DS-related emotional hyperconnectivity was restricted to state 6 episodes. The remaining states were not different between PDS and CON. The modulatory subnetwork synchronizes brain activity across brain regions. Atrophy and dysfunction within that subnetwork could facilitate the abnormal interaction between regions involved in emotion control with those controlling sense of agency/body ownership during state 6 and contribute to the tendency for somatization in PDS. The emotional motor subnetwork controls the activity of spinal motoneurons. Atrophy and dysfunction within this subnetwork could impair that control resulting in motor symptoms during DS. Taken together, these findings indicate that DS have a neurophysiological underpinning.
Collapse
Affiliation(s)
- S G Mueller
- Center for Imaging of Neurodegenerative Diseases, VAMC, San Francisco, CA, USA; Dept of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - N Garga
- VA Epilepsy Center of Excellence, VAMC, San Francisco, CA, USA; Dept. of Neurology, University of California, San Francisco, CA, USA
| | - P Garcia
- Dept. of Neurology, University of California, San Francisco, CA, USA
| | - S Rossi
- Center for Imaging of Neurodegenerative Diseases, VAMC, San Francisco, CA, USA
| | - A Vu
- Center for Imaging of Neurodegenerative Diseases, VAMC, San Francisco, CA, USA; Dept of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - T Neylan
- VA Mental Health, VAMC San Francisco, CA, USA
| | - K D Laxer
- Sutter Pacific Epilepsy Program, California Pacific Medical Center, San Francisco, CA, USA
| |
Collapse
|
3
|
Kwiatkowski A, Weidler C, Habel U, Coverdale NS, Hirad AA, Manning KY, Rauscher A, Bazarian JJ, Cook DJ, Li DKB, Mahon BZ, Menon RS, Taunton J, Reetz K, Romanzetti S, Huppertz C. Uncovering the hidden effects of repetitive subconcussive head impact exposure: A mega-analytic approach characterizing seasonal brain microstructural changes in contact and collision sports athletes. Hum Brain Mapp 2024; 45:e26811. [PMID: 39185683 PMCID: PMC11345636 DOI: 10.1002/hbm.26811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Repetitive subconcussive head impacts (RSHI) are believed to induce sub-clinical brain injuries, potentially resulting in cumulative, long-term brain alterations. This study explores patterns of longitudinal brain white matter changes across sports with RSHI-exposure. A systematic literature search identified 22 datasets with longitudinal diffusion magnetic resonance imaging data. Four datasets were centrally pooled to perform uniform quality control and data preprocessing. A total of 131 non-concussed active athletes (American football, rugby, ice hockey; mean age: 20.06 ± 2.06 years) with baseline and post-season data were included. Nonparametric permutation inference (one-sample t tests, one-sided) was applied to analyze the difference maps of multiple diffusion parameters. The analyses revealed widespread lateralized patterns of sports-season-related increases and decreases in mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) across spatially distinct white matter regions. Increases were shown across one MD-cluster (3195 voxels; mean change: 2.34%), one AD-cluster (5740 voxels; mean change: 1.75%), and three RD-clusters (817 total voxels; mean change: 3.11 to 4.70%). Decreases were shown across two MD-clusters (1637 total voxels; mean change: -1.43 to -1.48%), two RD-clusters (1240 total voxels; mean change: -1.92 to -1.93%), and one AD-cluster (724 voxels; mean change: -1.28%). The resulting pattern implies the presence of strain-induced injuries in central and brainstem regions, with comparatively milder physical exercise-induced effects across frontal and superior regions of the left hemisphere, which need further investigation. This article highlights key considerations that need to be addressed in future work to enhance our understanding of the nature of observed white matter changes, improve the comparability of findings across studies, and promote data pooling initiatives to allow more detailed investigations (e.g., exploring sex- and sport-specific effects).
Collapse
Affiliation(s)
- Anna Kwiatkowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
- Institute of Neuroscience and Medicine 10, Research Centre JülichJülichGermany
- JARA‐BRAIN Institute Brain Structure Function Relationship, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | | | - Adnan A. Hirad
- Department of SurgeryUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of NeuroscienceUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Del Monte Neuroscience Institute, University of RochesterNew YorkUSA
| | - Kathryn Y. Manning
- Department of RadiologyUniversity of Calgary and Alberta Children's Hospital Research InstituteCalgaryAlbertaCanada
| | - Alexander Rauscher
- Department of Radiology, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Pediatrics, Division of NeurologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- UBC MRI Research Centre, University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jeffrey J. Bazarian
- Department of Emergency MedicineUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| | - Douglas J. Cook
- Centre for Neuroscience Studies, Queen's UniversityKingstonOntarioCanada
- Division of Neurosurgery, Department of SurgeryQueen's UniversityKingstonOntarioCanada
| | - David K. B. Li
- Department of Radiology, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Bradford Z. Mahon
- Department of PsychologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
- Carnegie Mellon Neuroscience InstitutePittsburghPennsylvaniaUSA
- Department of NeurosurgeryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Ravi S. Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western OntarioLondonOntarioCanada
| | - Jack Taunton
- Allan McGavin Sports Medicine Centre, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kathrin Reetz
- Department of Neurology, Medical FacultyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | - Sandro Romanzetti
- Department of Neurology, Medical FacultyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | - Charlotte Huppertz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
4
|
Huang S, Li M, Huang C, Liu J. Acute limbic system connectivity predicts chronic cognitive function in mild traumatic brain injury: An individualized differential structural covariance network study. Pharmacol Res 2024; 206:107274. [PMID: 38906205 DOI: 10.1016/j.phrs.2024.107274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Mild traumatic brain injury (mTBI) is a known risk factor for neurodegenerative diseases, yet the precise pathophysiological mechanisms remain poorly understand, often obscured by group-level analysis in non-invasive neuroimaging studies. Individual-based method is critical to exploring heterogeneity in mTBI. We recruited 80 mTBI patients and 40 matched healthy controls, obtaining high-resolution structural MRI for constructing Individual Differential Structural Covariance Networks (IDSCN). Comparisons were conducted at both the individual and group levels. Connectome-based Predictive Modeling (CPM) was applied to predict cognitive performance based on whole-brain connectivity. During the acute stage of mTBI, patients exhibited significant heterogeneity in the count and direction of altered edges, obscured by group-level analysis. In the chronic stage, the number of altered edges decreased and became more consistent, aligning with clinical observations of acute cognitive impairment and gradual improvement. Subgroup analysis based on loss of consciousness/post-traumatic amnesia revealed distinct patterns of alterations. The temporal lobe, particularly regions related to the limbic system, significantly predicted cognitive function from acute to chronic stage. The use of IDSCN and CPM has provided valuable individual-level insights, reconciling discrepancies from previous studies. Additionally, the limbic system may be an appropriate target for future intervention efforts.
Collapse
Affiliation(s)
- Sihong Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Mengjun Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chuxin Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Radiology Quality Control Center, Hunan Province, Changsha, Hunan 410011, China; Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan 410011, China.
| |
Collapse
|
5
|
Owen MM, Workman CD, Angileri HS, Terry MA, Tjong VK. Musculoskeletal injuries during trail sports: Sex- and age-specific analyses over 20 years from a national injury database. Wilderness Environ Med 2024; 35:138-146. [PMID: 38454756 DOI: 10.1177/10806032241234029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
INTRODUCTION Musculoskeletal (MSK) injuries in US trail sports are understudied as trail sport popularity grows. This study describes MSK injury patterns among hikers, trail runners, and mountain bikers from 2002 through 2021 and investigates MSK injury trends acquired during mountain sports. METHODS The National Electronic Injury Surveillance System (NEISS) was used to identify US emergency department (ED) patients from 2002-2021 (inclusive) who endured MSK injuries during hiking, trail running, or mountain biking. Injury rates and national estimates were calculated across demographics. RESULTS 9835 injuries were included (48.4% male, 51.6% female). Injuries increased over time, with 1213 from 2002-2005 versus 2417 from 2018-2021. No sex differences existed before 2010, after which female injury rates exceeded those of males. The following findings were statistically significant, with P<0.05: females endured more fractures and strains/sprains; males endured more lacerations; concussions and head injuries were higher among those <18 y; dislocations and strains/sprains were higher for 18 to 65 y; fractures were higher for >65 y; <18 y had high mountain-biking and low running rates; 18 to 65 y had high running rates; and >65 y had low biking and running rates. Although all diagnoses increased in number over time, no significant differences existed in the proportion of any given diagnosis relative to total injuries. CONCLUSIONS MSK injuries during trail sports have increased since 2002. Males endured more injuries until 2009, after which females endured more. Significant sex and age differences were found regarding injury diagnosis and body parts. Further studies are needed to confirm these trends and their causes.
Collapse
Affiliation(s)
- Madeline M Owen
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Connor D Workman
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Michael A Terry
- Division of Orthopaedic Surgery, Northwestern University, Chicago, IL
| | - Vehniah K Tjong
- Division of Orthopaedic Surgery, Northwestern University, Chicago, IL
| |
Collapse
|
6
|
Chen Q, Bharadwaj V, Irvine KA, Clark JD. Mechanisms and treatments of chronic pain after traumatic brain injury. Neurochem Int 2023; 171:105630. [PMID: 37865340 PMCID: PMC11790307 DOI: 10.1016/j.neuint.2023.105630] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
While pain after trauma generally resolves, some trauma patients experience pain for months to years after injury. An example, relevant to both combat and civilian settings, is chronic pain after traumatic brain injury (TBI). Headache as well as pain in the back and extremities are common locations for TBI-related chronic pain to be experienced. TBI-related pain can exist alone or can exacerbate pain from other injuries long after healing has occurred. Consequences of chronic pain in these settings include increased suffering, higher levels of disability, serious emotional problems, and worsened cognitive deficits. The current review will examine recent evidence regarding dysfunction of endogenous pain modulatory mechanisms, neuroplastic changes in the trigeminal circuitry and alterations in spinal nociceptive processing as contributors to TBI-related chronic pain. Key pain modulatory centers including the locus coeruleus, periaqueductal grey matter, and rostroventromedial medulla are vulnerable to TBI. Both the rationales and existing evidence for the use of monoamine reuptake inhibitors, CGRP antagonists, CXCR2 chemokine receptor antagonists, and interventional therapies will be presented. While consensus guidelines for the management of chronic post-traumatic TBI-related pain are lacking, several approaches to this clinically challenging situation deserve focused evaluation and may prove to be viable therapeutic options.
Collapse
Affiliation(s)
- QiLiang Chen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Vimala Bharadwaj
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Karen-Amanda Irvine
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA, 94304, USA
| | - J David Clark
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA, 94304, USA.
| |
Collapse
|
7
|
Wang X, Hui X, Wang X, Huang B, Gan X, Liu X, Shen Z, Sun Y, Li L. Utilization of clinical and radiological parameters to predict cognitive prognosis in patients with mild-to-moderate traumatic brain injury. Front Neurosci 2023; 17:1222541. [PMID: 37575301 PMCID: PMC10412890 DOI: 10.3389/fnins.2023.1222541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Background Cognitive impairment is a common sequela following traumatic brain injury (TBI). This study aimed to identify risk factors for cognitive impairment after 3 and 12 months of TBI and to create nomograms to predict them. Methods A total of 305 mild-to-moderate TBI patients admitted to the First Affiliated Hospital with Nanjing Medical University from January 2018 to January 2022 were retrospectively recruited. Risk factors for cognitive impairment after 3 and 12 months of TBI were identified by univariable and multivariable logistic regression analyses. Based on these factors, we created two nomograms to predict cognitive impairment after 3 and 12 months of TBI, the discrimination and calibration of which were validated by plotting the receiver operating characteristic (ROC) curve and calibration curve, respectively. Results Cognitive impairment was detected in 125/305 and 52/305 mild-to-moderate TBI patients after 3 and 12 months of injury, respectively. Age, the Glasgow Coma Scale (GCS) score, >12 years of education, hyperlipidemia, temporal lobe contusion, traumatic subarachnoid hemorrhage (tSAH), very early rehabilitation (VER), and intensive care unit (ICU) admission were independent risk factors for cognitive impairment after 3 months of mild-to-moderate TBI. Meanwhile, age, GCS score, diabetes mellitus, tSAH, and surgical treatment were independent risk factors for cognitive impairment after 12 months of mild-to-moderate TBI. Two nomograms were created based on the risk factors identified using logistic regression analyses. The areas under the curve (AUCs) of the two nomograms to predict cognitive impairment after 3 and 12 months of mild-to-moderate TBI were 0.852 (95% CI [0.810, 0.895]) and 0.817 (95% CI [0.762, 0.873]), respectively. Conclusion Two nomograms are created to predict cognitive impairment after 3 and 12 months of TBI. Age, GCS score, >12 years of education, hyperlipidemia, temporal lobe contusion, tSAH, VER, and ICU admission are independent risk factors for cognitive impairment after 3 months of TBI; meanwhile, age, the GCS scores, diabetes mellitus, tSAH, and surgical treatment are independent risk factors of cognitive impairment after 12 months of TBI. Two nomograms, based on both groups of factors, respectively, show strong discriminative abilities.
Collapse
Affiliation(s)
- Xi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaobo Hui
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Xiangyu Wang
- Department of Rehabilitation Medicine, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Baosheng Huang
- Department of Neurosurgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaokui Gan
- Department of Neurosurgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xingdong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyan Shen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Sun
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lixin Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Zhao Y, Paulus MP, Potenza MN. Brain structural co-development is associated with internalizing symptoms two years later in the ABCD cohort. J Behav Addict 2023; 12:80-93. [PMID: 36940096 PMCID: PMC10260217 DOI: 10.1556/2006.2023.00006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/23/2023] [Accepted: 02/13/2023] [Indexed: 03/21/2023] Open
Abstract
Background and aims About 1/3 of youth spend more than four hours/day engaged in screen media activity (SMA). This investigation utilized longitudinal brain imaging and mediation analyses to examine relationships among SMA, brain patterns, and internalizing problems. Methods Data from Adolescent Brain Cognitive Development (ABCD) participants with baseline and two-year follow-up structural imaging data that passed quality control (N = 5,166; 2,385 girls) were analyzed. Joint and Individual Variation Explained (JIVE) identified a brain co-development pattern among 221 brain features (i.e., differences in surface area, thickness, or cortical and subcortical gray-matter volume between baseline and two-year-follow-up data). Generalized linear mixed-effect models investigated associations between baseline SMA, structural co-development and internalizing and externalizing psychopathology at two-year follow-up. Results SMA at baseline was related to internalizing psychopathology at year 2 (β=0.020,SE=0.008,P=0.014) and a structural co-development pattern (β=0.015,SE=0.007,P=0.029), where the co-development pattern suggested that rates of change in gray-matter volumes of the brainstem, gray-matter volumes and/or cortical thickness measures of bilateral superior frontal, rostral middle frontal, inferior parietal, and inferior temporal regions were more similar than those in other regions. This component partially mediated the relationship between baseline SMA and future internalizing problems (indirect effect = 0.020, P-value = 0.043, proportion mediated: 2.24%). Discussion and conclusions Greater youth engagement in SMA at ages 9-10 years statistically predicted higher levels of internalizing two years later. This association was mediated by cortical-brainstem circuitry, albeit with relatively small effect sizes. The findings may help delineate processes contributing to internalizing behaviors and assist in identifying individuals at greater risk for such problems.
Collapse
Affiliation(s)
- Yihong Zhao
- Columbia University School of Nursing, New York, NY, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Martin P. Paulus
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Psychiatry, University of California San Diego, USA
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
| |
Collapse
|
9
|
Lee D, Lee Y, Lee Y, Kim K. Functional Connectivity in the Mouse Brainstem Represents Signs of Recovery from Concussion. J Neurotrauma 2023; 40:240-249. [PMID: 36103389 DOI: 10.1089/neu.2022.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is one of the most frequent neurological disorders. Diagnostic criteria for mTBI are based on cognitive or neurological symptoms without fully understanding the neuropathological basis for explaining behaviors. From the neuropathological perspective of mTBI, recent neuroimaging studies have focused on structural or functional differences in motor-related cortical regions but did not compare topological network properties between the post-concussion days in the brainstem. We investigated temporal changes in functional connectivity and evaluated network properties of functional networks in the mouse brainstem. We observed a significantly decreased functional connectivity and global and local network properties on post-concussion day 7, which normalized on post-concussion day 14. Functional connectivity and local network properties on post-concussion day 2 were also significantly decreased compared with those on post-concussion day 14, but there were no significant group differences in global network properties between days 2 and 14. We also observed that the local efficiency and clustering coefficient of the brainstem network were significantly correlated with anxiety-like behaviors on post-concussion days 7 and 14. This study suggests that functional connectivity in the mouse brainstem provides vital recovery signs from concussion through functional reorganization.
Collapse
Affiliation(s)
- Dongha Lee
- Cognitive Science Research Group and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yujeong Lee
- Cognitive Science Research Group and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yoonsang Lee
- Cognitive Science Research Group and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Kipom Kim
- Research Strategy Office, Korea Brain Research Institute, Daegu, Republic of Korea
| |
Collapse
|
10
|
A model for estimating the brainstem volume in normal healthy individuals and its application to diffuse axonal injury patients. Sci Rep 2023; 13:33. [PMID: 36593347 PMCID: PMC9807567 DOI: 10.1038/s41598-022-27202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Diffuse axonal injury (DAI) is a subtype of traumatic brain injury that causes acute-phase consciousness disorders and widespread chronic-phase brain atrophy. Considering the importance of brainstem damage in DAI, a valid method for evaluating brainstem volume is required. We obtained volume measurements from 182 healthy adults by analyzing T1-weighted magnetic resonance images, and created an age-/sex-/intracranial volume-based quantitative model to estimate the normal healthy volume of the brainstem and cerebrum. We then applied this model to the volume measurements of 22 DAI patients, most of whom were in the long-term chronic phase and had no gross focal injury, to estimate the percentage difference in volume from the expected normal healthy volume in different brain regions, and investigated its association with the duration of posttraumatic amnesia (which is an early marker of injury severity). The average loss of the whole brainstem was 13.9%. Moreover, the percentage loss of the whole brainstem, and particularly of the pons and midbrain, was significantly negatively correlated with the duration of posttraumatic amnesia. Our findings suggest that injury severity, as denoted by the duration of posttraumatic amnesia, is among the factors affecting the chronic-phase brainstem volume in patients with DAI.
Collapse
|