1
|
Eapen BC, Tran J, Ballard-Hernandez J, Buelt A, Hoppes CW, Matthews C, Pundik S, Reston J, Tchopev Z, Wayman LM, Koehn T. Stroke Rehabilitation: Synopsis of the 2024 U.S. Department of Veterans Affairs and U.S. Department of Defense Clinical Practice Guidelines. Ann Intern Med 2025; 178:249-268. [PMID: 39832369 DOI: 10.7326/annals-24-02205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
DESCRIPTION In July 2024, the U.S. Department of Veterans Affairs (VA) and U.S. Department of Defense (DOD) released a joint update of their 2019 clinical practice guideline (CPG) for the management of stroke rehabilitation. This synopsis is a condensed version of the 2024 CPG, highlighting the key aspects of the guideline development process and describing the major recommendations. METHODS The VA/DOD Evidence-Based Practice Work Group convened a joint VA/DOD guideline development work group (WG) that included clinical stakeholders and conformed to the Institute of Medicine's tenets for trustworthy CPGs. The guideline WG conducted a patient focus group, developed key questions, and systematically searched and evaluated the literature (English-language publications from 1 July 2018 to 2 May 2023). The GRADE (Grading of Recommendations Assessment, Development and Evaluation) system was used to evaluate the evidence. The WG developed 47 recommendations along with algorithms for stroke rehabilitation in the inpatient and outpatient settings. Stakeholders outside the WG reviewed the CPG before approval by the VA/DOD Evidence-Based Practice Work Group. RECOMMENDATIONS This synopsis summarizes where evidence is strongest to support guidelines in crucial areas relevant to primary care physicians: transition to community (case management, psychosocial or behavioral interventions); motor therapy (task-specific practice, mirror therapy, rhythmic auditory stimulation, electrical stimulation, botulinum toxin for spasticity); dysphagia, aphasia, and cognition (chin tuck against resistance, respiratory muscle strength training); and mental health (selective serotonin reuptake inhibitor use, psychotherapy, mindfulness-based therapies for treatment but not prevention of depression).
Collapse
Affiliation(s)
- Blessen C Eapen
- Physical Medicine and Rehabilitation Services, Veterans Affairs Greater Los Angeles Health Care, and Division of Physical Medicine and Rehabilitation, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California (B.C.E.)
| | - Johanna Tran
- Comprehensive Integrated Inpatient Rehabilitation Program, James A. Haley Veterans' Hospital, Tampa, Florida (J.T.)
| | - Jennifer Ballard-Hernandez
- Evidence-Based Practice, Office of Quality and Patient Safety, Veterans Affairs Central Office, Washington, DC (J.B.-H., L.M.W.)
| | - Andrew Buelt
- Bay Pines Veterans Affairs Healthcare System, Bay Pines, Florida (A.B.)
| | - Carrie W Hoppes
- Army-Baylor University Doctoral Program in Physical Therapy, San Antonio, Texas (C.W.H.)
| | - Christine Matthews
- Audiology and Speech Pathology, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania (C.M.)
| | - Svetlana Pundik
- Case Western Reserve University School of Medicine and Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio (S.P.)
| | | | - Zahari Tchopev
- 59th Medical Wing, U.S. Air Force, Wilford Hall Ambulatory Surgical Center, San Antonio, Texas (Z.T.)
| | - Lisa M Wayman
- Evidence-Based Practice, Office of Quality and Patient Safety, Veterans Affairs Central Office, Washington, DC (J.B.-H., L.M.W.)
| | - Tyler Koehn
- 959 Medical Operations Squadron, U.S. Air Force, Department of Neurology, Brooke Army Medical Center, San Antonio, Texas (T.K.)
| |
Collapse
|
2
|
Kiyono K, Tanabe S, Hirano S, Ii T, Nakagawa Y, Tan K, Saitoh E, Otaka Y. Effectiveness of Robotic Devices for Medical Rehabilitation: An Umbrella Review. J Clin Med 2024; 13:6616. [PMID: 39518755 PMCID: PMC11546060 DOI: 10.3390/jcm13216616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Clinical trials have investigated the efficacy of rehabilitation robotics for various pathological conditions, but the overall impact on rehabilitation practice remains unclear. We comprehensively examined and analyzed systematic reviews (SRs) of randomized controlled trials (RCTs) investigating rehabilitative interventions with robotic devices. Methods: Four databases were searched using term combinations of keywords related to robotic devices, rehabilitation, and SRs. The SR meta-analyses were categorized into "convincing", "highly suggestive", "suggestive", "weak", or "non-significant" depending on evidence strength and validity. Results: Overall, 62 SRs of 341 RCTs involving 14,522 participants were identified. Stroke was most frequently reported (40 SRs), followed by spinal cord injury (eight SRs), multiple sclerosis (four SRs), cerebral palsy (four SRs), Parkinson's disease (three SRs), and neurological disease (any disease causing limited upper- and lower-limb functioning; three SRs). Furthermore, 38, 21, and 3 SRs focused on lower-limb devices, upper-limb devices, and both upper- and lower-limb devices, respectively. Quantitative synthesis of robotic intervention effects was performed by 51 of 62 SRs. Robot-assisted training was effective for various outcome measures per disease. Meta-analyses offering suggestive evidence were limited to studies on stroke. Upper-limb devices were effective for motor control and activities of daily living, and lower-limb devices for walking independence in stroke. Conclusions: Robotic devices are useful for improving impairments and disabilities in several diseases. Further high-quality SRs including RCTs with large sample sizes and meta-analyses of these RCTs, particularly on non-stroke-related diseases, are required. Further research should also ascertain which type of robotic device is the most effective for improving each specific impairment or disability.
Collapse
Affiliation(s)
- Kei Kiyono
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (K.K.); (S.T.); (T.I.)
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (K.K.); (S.T.); (T.I.)
| | - Satoshi Hirano
- Department of Rehabilitation Medicine, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.H.); (Y.N.); (K.T.); (E.S.)
| | - Takuma Ii
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (K.K.); (S.T.); (T.I.)
| | - Yuki Nakagawa
- Department of Rehabilitation Medicine, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.H.); (Y.N.); (K.T.); (E.S.)
- Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Koki Tan
- Department of Rehabilitation Medicine, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.H.); (Y.N.); (K.T.); (E.S.)
| | - Eiichi Saitoh
- Department of Rehabilitation Medicine, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.H.); (Y.N.); (K.T.); (E.S.)
| | - Yohei Otaka
- Department of Rehabilitation Medicine, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.H.); (Y.N.); (K.T.); (E.S.)
| |
Collapse
|
3
|
Rajashekar D, Boyer A, Larkin-Kaiser KA, Dukelow SP. Technological Advances in Stroke Rehabilitation: Robotics and Virtual Reality. Phys Med Rehabil Clin N Am 2024; 35:383-398. [PMID: 38514225 DOI: 10.1016/j.pmr.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Robotic technology and virtual reality (VR) have been widely studied technologies in stroke rehabilitation over the last few decades. Both technologies have typically been considered as ways to enhance recovery through promoting intensive, repetitive, and engaging therapies. In this review, we present the current evidence from interventional clinical trials that employ either robotics, VR, or a combination of both modalities to facilitate post-stroke recovery. Broadly speaking, both technologies have demonstrated some success in improving post-stroke outcomes and complementing conventional therapy. However, more high-quality, randomized, multicenter trials are required to confirm our current understanding of their role in precision stroke recovery.
Collapse
Affiliation(s)
- Deepthi Rajashekar
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alexa Boyer
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Schulich School of Engineering: Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Kelly A Larkin-Kaiser
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Ablerta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Division of Physical Medicine and Rehabilitation, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|