1
|
Siviy C, Baker LM, Quinlivan BT, Porciuncula F, Swaminathan K, Awad LN, Walsh CJ. Opportunities and challenges in the development of exoskeletons for locomotor assistance. Nat Biomed Eng 2023; 7:456-472. [PMID: 36550303 PMCID: PMC11536595 DOI: 10.1038/s41551-022-00984-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Exoskeletons can augment the performance of unimpaired users and restore movement in individuals with gait impairments. Knowledge of how users interact with wearable devices and of the physiology of locomotion have informed the design of rigid and soft exoskeletons that can specifically target a single joint or a single activity. In this Review, we highlight the main advances of the past two decades in exoskeleton technology and in the development of lower-extremity exoskeletons for locomotor assistance, discuss research needs for such wearable robots and the clinical requirements for exoskeleton-assisted gait rehabilitation, and outline the main clinical challenges and opportunities for exoskeleton technology.
Collapse
Affiliation(s)
- Christopher Siviy
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Lauren M Baker
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Brendan T Quinlivan
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Franchino Porciuncula
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Physical Therapy, College of Health and Rehabilitation Sciences: Sargent, Boston University, Boston, MA, USA
| | - Krithika Swaminathan
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Louis N Awad
- Department of Physical Therapy, College of Health and Rehabilitation Sciences: Sargent, Boston University, Boston, MA, USA
| | - Conor J Walsh
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Adjustable Stiffness-Based Supination–Pronation Forearm Physical Rehabilitator. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This paper reports a new medical device together with a control strategy that focuses on the following tasks: (1) a trajectory tracking problem associated with the supination–pronation motion of the wrist–forearm for purposes of rehabilitation and (2) the adjustment of the system’s stiffness associated with the applied torque guaranteeing the angular motion of the rehabilitator as well as the resistance that potential users must overcome. These two tasks are oriented to regain the range of motion (ROM) of the wrist–forearm and to improve the strength of the associated muscles. It is worth mentioning that this device has not been clinically validated. However, the performance of the closed-loop medical device is validated with preliminary experiments with a healthy subject based on movement patterns involving passive, assisted-resisted, and active phases of rehabilitation protocols.
Collapse
|
3
|
Porciuncula F, Baker TC, Arumukhom Revi D, Bae J, Sloutsky R, Ellis TD, Walsh CJ, Awad LN. Targeting Paretic Propulsion and Walking Speed With a Soft Robotic Exosuit: A Consideration-of-Concept Trial. Front Neurorobot 2021; 15:689577. [PMID: 34393750 PMCID: PMC8356079 DOI: 10.3389/fnbot.2021.689577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Soft robotic exosuits can facilitate immediate increases in short- and long-distance walking speeds in people with post-stroke hemiparesis. We sought to assess the feasibility and rehabilitative potential of applying propulsion-augmenting exosuits as part of an individualized and progressive training program to retrain faster walking and the underlying propulsive strategy. Methods: A 54-yr old male with chronic hemiparesis completed five daily sessions of Robotic Exosuit Augmented Locomotion (REAL) gait training. REAL training consists of high-intensity, task-specific, and progressively challenging walking practice augmented by a soft robotic exosuit and is designed to facilitate faster walking by way of increased paretic propulsion. Repeated baseline assessments of comfortable walking speed over a 2-year period provided a stable baseline from which the effects of REAL training could be elucidated. Additional outcomes included paretic propulsion, maximum walking speed, and 6-minute walk test distance. Results: Comfortable walking speed was stable at 0.96 m/s prior to training and increased by 0.30 m/s after training. Clinically meaningful increases in maximum walking speed (Δ: 0.30 m/s) and 6-minute walk test distance (Δ: 59 m) were similarly observed. Improvements in paretic peak propulsion (Δ: 2.80 %BW), propulsive power (Δ: 0.41 W/kg), and trailing limb angle (Δ: 6.2 degrees) were observed at comfortable walking speed (p's < 0.05). Likewise, improvements in paretic peak propulsion (Δ: 4.63 %BW) and trailing limb angle (Δ: 4.30 degrees) were observed at maximum walking speed (p's < 0.05). Conclusions: The REAL training program is feasible to implement after stroke and capable of facilitating rapid and meaningful improvements in paretic propulsion, walking speed, and walking distance.
Collapse
Affiliation(s)
- Franchino Porciuncula
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA, United States
| | - Teresa C. Baker
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA, United States
| | - Dheepak Arumukhom Revi
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA, United States
| | - Jaehyun Bae
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States
- Apple Inc., Cupertino, CA, United States
| | - Regina Sloutsky
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA, United States
| | - Terry D. Ellis
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA, United States
| | - Conor J. Walsh
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States
| | - Louis N. Awad
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA, United States
| |
Collapse
|
4
|
Majidi Fard Vatan H, Nefti-Meziani S, Davis S, Saffari Z, El-Hussieny H. A review: A Comprehensive Review of Soft and Rigid Wearable Rehabilitation and Assistive Devices with a Focus on the Shoulder Joint. J INTELL ROBOT SYST 2021. [DOI: 10.1007/s10846-021-01353-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThe importance of the human upper limb role in performing daily life and personal activities is significant. Improper functioning of this organ due to neurological disorders or surgeries can greatly affect the daily activities performed by patients. This paper aims to comprehensively review soft and rigid wearable robotic devices provided for rehabilitation and assistance focusing on the shoulder joint. In the last two decades, many devices have been proposed in this regard, however, there have been a few groups whose devices have had effective therapeutic capability with acceptable clinical evidence. Also, there were not many portable, lightweight and user-friendly devices. Therefore, this comprehensive study could pave the way for achieving optimal future devices, given the growing need for these devices. According to the results, the most commonly used plan was Exoskeleton, the most commonly used actuators were electrical, and most devices were considered to be stationary and rigid. By doing these studies, the advantages and disadvantages of each method are also presented. The presented devices each have a new idea and attitude in a specific field to solve the problems of movement disorders and rehabilitation, which were in the form of prototypes, initial clinical studies and sometimes comprehensive clinical and commercial studies. These plans need more comprehensive clinical trials to become a complete and efficient plan. This article could be used by researchers to identify and evaluate the important features and strengths and weaknesses of the plans to lead to the presentation of more optimal plans in the future.
Collapse
|
5
|
Tucan P, Vaida C, Ulinici I, Banica A, Burz A, Pop N, Birlescu I, Gherman B, Plitea N, Antal T, Carbone G, Pisla D. Optimization of the ASPIRE Spherical Parallel Rehabilitation Robot Based on Its Clinical Evaluation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3281. [PMID: 33810042 PMCID: PMC8004699 DOI: 10.3390/ijerph18063281] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
The paper presents the design optimization of the ASPIRE spherical parallel robot for shoulder rehabilitation following clinical evaluation and clinicians' feedback. After the development of the robotic structure and the implementation of the control system, ASPIRE was prepared for clinical evaluation. A set of clinical trials was performed on 24 patients with different neurological disorders to obtain the patient and clinician acceptance of the rehabilitation system. During the clinical trials, the behavior of the robotic system was closely monitored and analyzed in order to improve its reliability and overall efficiency. Along with its reliability and efficiency, special attention was given to the safety characteristics during the rehabilitation task.
Collapse
Affiliation(s)
- Paul Tucan
- CESTER, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (P.T.); (I.U.); (A.B.); (A.B.); (N.P.); (I.B.); (B.G.); (N.P.); (T.A.)
| | - Calin Vaida
- CESTER, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (P.T.); (I.U.); (A.B.); (A.B.); (N.P.); (I.B.); (B.G.); (N.P.); (T.A.)
| | - Ionut Ulinici
- CESTER, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (P.T.); (I.U.); (A.B.); (A.B.); (N.P.); (I.B.); (B.G.); (N.P.); (T.A.)
| | - Alexandru Banica
- CESTER, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (P.T.); (I.U.); (A.B.); (A.B.); (N.P.); (I.B.); (B.G.); (N.P.); (T.A.)
| | - Alin Burz
- CESTER, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (P.T.); (I.U.); (A.B.); (A.B.); (N.P.); (I.B.); (B.G.); (N.P.); (T.A.)
| | - Nicoleta Pop
- CESTER, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (P.T.); (I.U.); (A.B.); (A.B.); (N.P.); (I.B.); (B.G.); (N.P.); (T.A.)
| | - Iosif Birlescu
- CESTER, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (P.T.); (I.U.); (A.B.); (A.B.); (N.P.); (I.B.); (B.G.); (N.P.); (T.A.)
| | - Bogdan Gherman
- CESTER, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (P.T.); (I.U.); (A.B.); (A.B.); (N.P.); (I.B.); (B.G.); (N.P.); (T.A.)
| | - Nicolae Plitea
- CESTER, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (P.T.); (I.U.); (A.B.); (A.B.); (N.P.); (I.B.); (B.G.); (N.P.); (T.A.)
| | - Tiberiu Antal
- CESTER, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (P.T.); (I.U.); (A.B.); (A.B.); (N.P.); (I.B.); (B.G.); (N.P.); (T.A.)
| | | | - Doina Pisla
- CESTER, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (P.T.); (I.U.); (A.B.); (A.B.); (N.P.); (I.B.); (B.G.); (N.P.); (T.A.)
| |
Collapse
|
6
|
Calabrò RS, Accorinti M, Porcari B, Carioti L, Ciatto L, Billeri L, Andronaco VA, Galletti F, Filoni S, Naro A. Does hand robotic rehabilitation improve motor function by rebalancing interhemispheric connectivity after chronic stroke? Encouraging data from a randomised-clinical-trial. Clin Neurophysiol 2019; 130:767-780. [DOI: 10.1016/j.clinph.2019.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 01/16/2023]
|
7
|
Kim SB, Lee KW, Lee JH, Lee SJ, Park JG, Lee JB. Effect of Combined Therapy of Robot and Low-Frequency Repetitive Transcranial Magnetic Stimulation on Hemispatial Neglect in Stroke Patients. Ann Rehabil Med 2018; 42:788-797. [PMID: 30613071 PMCID: PMC6325312 DOI: 10.5535/arm.2018.42.6.788] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/16/2018] [Indexed: 11/08/2022] Open
Abstract
Objective To investigate the effect of upper limb rehabilitation combining robot with low-frequency repetitive transcranial magnetic stimulation (rTMS) on unilateral spatial neglect in stroke patients. Methods Patients who had hemispatial neglect after right hemisphere stroke were randomly divided into rTMS only group, robot only group, and combined group. All groups received conventional neglect therapy and additional treatment for each group. rTMS group received rTMS therapy. Robot group received robot therapy, while combined group received both therapies. The effect of therapy was assessed with Motor-Free Visual Perception Test-3 (MVPT-3), line bisection test, star cancellation test, Catherine Bergego Scale (CBS), Mini-Mental State Examination (MMSE), and the Korean version of Modified Barthel Index (K-MBI). These measurements were evaluated before and after treatment. Results For each group, 10 patients were recruited. There were no significant differences in baseline characteristics or initial values among the three groups. Two weeks after the therapy, all groups showed significant improvement in MVPT-3, line bisection test, star cancellation test, CBS, MMSE, and K-MBI. However, changes in measurements showed no significant differences among groups. Conclusion Treatment effect of the combined therapy of robotic therapy and low-frequency rTMS therapy for hemispatial neglect was not statistically different from that of each single treatment. Results of this study did not prove the superiority of any of the three treatments. Further study with large number of patients is needed to evaluate the superiority of these treatments.
Collapse
Affiliation(s)
- Sang Beom Kim
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine, Busan, Korea.,Regional Cardiocerebrovascular Center, Dong-A University Medical Center, Busan, Korea
| | - Kyeong Woo Lee
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine, Busan, Korea.,Regional Cardiocerebrovascular Center, Dong-A University Medical Center, Busan, Korea
| | - Jong Hwa Lee
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine, Busan, Korea.,Regional Cardiocerebrovascular Center, Dong-A University Medical Center, Busan, Korea
| | - Sook Joung Lee
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine, Busan, Korea.,Regional Cardiocerebrovascular Center, Dong-A University Medical Center, Busan, Korea
| | - Jin Gee Park
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine, Busan, Korea.,Regional Cardiocerebrovascular Center, Dong-A University Medical Center, Busan, Korea
| | - Joung Bok Lee
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine, Busan, Korea.,Regional Cardiocerebrovascular Center, Dong-A University Medical Center, Busan, Korea
| |
Collapse
|
8
|
Onose G, Popescu N, Munteanu C, Ciobanu V, Sporea C, Mirea MD, Daia C, Andone I, Spînu A, Mirea A. Mobile Mechatronic/Robotic Orthotic Devices to Assist-Rehabilitate Neuromotor Impairments in the Upper Limb: A Systematic and Synthetic Review. Front Neurosci 2018; 12:577. [PMID: 30233289 PMCID: PMC6134072 DOI: 10.3389/fnins.2018.00577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
This paper overviews the state-of-the-art in upper limb robot-supported approaches, focusing on advancements in the related mechatronic devices for the patients' rehabilitation and/or assistance. Dedicated to the technical, comprehensively methodological and global effectiveness and improvement in this inter-disciplinary field of research, it includes information beyond the therapy administrated in clinical settings-but with no diminished safety requirements. Our systematic review, based on PRISMA guidelines, searched articles published between January 2001 and November 2017 from the following databases: Cochrane, Medline/PubMed, PMC, Elsevier, PEDro, and ISI Web of Knowledge/Science. Then we have applied a new innovative PEDro-inspired technique to classify the relevant articles. The article focuses on the main indications, current technologies, categories of intervention and outcome assessment modalities. It includes also, in tabular form, the main characteristics of the most relevant mobile (wearable and/or portable) mechatronic/robotic orthoses/exoskeletons prototype devices used to assist-rehabilitate neuromotor impairments in the upper limb.
Collapse
Affiliation(s)
- Gelu Onose
- Department of Physical and Rehabilitation Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Emergency Clinical Hospital Bagdasar Arseni, Bucharest, Romania
| | - Nirvana Popescu
- Computer Science Department, Politehnica University of Bucharest, Bucharest, Romania
| | | | - Vlad Ciobanu
- Computer Science Department, Politehnica University of Bucharest, Bucharest, Romania
| | - Corina Sporea
- National Teaching Center for Neuro-Psyhomotor Rehabilitation in Children N. Robanescu, Bucharest, Romania
| | - Marian-Daniel Mirea
- National Teaching Center for Neuro-Psyhomotor Rehabilitation in Children N. Robanescu, Bucharest, Romania
| | - Cristina Daia
- Department of Physical and Rehabilitation Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Emergency Clinical Hospital Bagdasar Arseni, Bucharest, Romania
| | - Ioana Andone
- Emergency Clinical Hospital Bagdasar Arseni, Bucharest, Romania
| | - Aura Spînu
- Emergency Clinical Hospital Bagdasar Arseni, Bucharest, Romania
| | - Andrada Mirea
- Department of Physical and Rehabilitation Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,National Teaching Center for Neuro-Psyhomotor Rehabilitation in Children N. Robanescu, Bucharest, Romania
| |
Collapse
|
9
|
Apte S, Plooij M, Vallery H. Influence of body weight unloading on human gait characteristics: a systematic review. J Neuroeng Rehabil 2018; 15:53. [PMID: 29925400 PMCID: PMC6011391 DOI: 10.1186/s12984-018-0380-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 04/30/2018] [Indexed: 11/15/2022] Open
Abstract
Background Body weight support (BWS) systems have shown promise as rehabilitation tools for neurologically impaired individuals. This paper reviews the experiment-based research on BWS systems with the aim: (1) To investigate the influence of body weight unloading (BWU) on gait characteristics; (2) To study whether the effects of BWS differ between treadmill and overground walking and (3) To investigate if modulated BWU influences gait characteristics less than unmodulated BWU. Method A systematic literature search was conducted in the following search engines: Pubmed, Scopus, Web of Science and Google Scholar. Statistical analysis was used to quantify the effects of BWU on gait parameters. Results 54 studies of experiments with healthy and neurologically impaired individuals walking in a BWS system were included and 32 of these were used for the statistical analysis. Literature was classified using three distinctions: (1) treadmill or overground walking; (2) the type of subjects and (3) the nature of unloading force. Only 27% studies were based on neurologically impaired subjects; a low number considering that they are the primary user group for BWS systems. The studies included BWU from 5% to 100% and the 30% and 50% BWU conditions were the most widely studied. The number of participants varied from 1 to 28, with an average of 12. It was seen that due to the increase in BWU level, joint moments, muscle activity, energy cost of walking and ground reaction forces (GRF) showed higher reduction compared to gait spatio-temporal and joint kinematic parameters. The influence of BWU on kinematic and spatio-temporal gait parameters appeared to be limited up to 30% unloading. 5 gait characteristics presented different behavior in response to BWU for overground and treadmill walking. Remaining 21 gait characteristics showed similar behavior but different magnitude of change for overground and treadmill walking. Modulated unloading force generally led to less difference from the 0% condition than unmodulated unloading. Conclusion This review has shown that BWU influences all gait characteristics, albeit with important differences between the kinematic, spatio-temporal and kinetic characteristics. BWU showed stronger influence on the kinetic characteristics of gait than on the spatio-temporal parameters and the kinematic characteristics. It was ascertained that treadmill and overground walking can alter the effects of BWU in a different manner. Our results indicate that task-specific gait training is likely to be achievable at a BWU level of 30% and below. Electronic supplementary material The online version of this article (10.1186/s12984-018-0380-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Salil Apte
- Mechanical, Maritime and Materials Engineering (3mE), TU Delft, Mekelweg 2, Delft, 2628 CD, Netherlands
| | - Michiel Plooij
- Mechanical, Maritime and Materials Engineering (3mE), TU Delft, Mekelweg 2, Delft, 2628 CD, Netherlands.,Motekforce Link, Hogehilweg 18-C, Amsterdam, 1101 CD, Netherlands
| | - Heike Vallery
- Mechanical, Maritime and Materials Engineering (3mE), TU Delft, Mekelweg 2, Delft, 2628 CD, Netherlands.
| |
Collapse
|
10
|
Yeung LF, Ockenfeld C, Pang MK, Wai HW, Soo OY, Li SW, Tong KY. Randomized controlled trial of robot-assisted gait training with dorsiflexion assistance on chronic stroke patients wearing ankle-foot-orthosis. J Neuroeng Rehabil 2018; 15:51. [PMID: 29914523 PMCID: PMC6006663 DOI: 10.1186/s12984-018-0394-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Robot-assisted ankle-foot-orthosis (AFO) can provide immediate powered ankle assistance in post-stroke gait training. Our research team has developed a novel lightweight portable robot-assisted AFO which is capable of detecting walking intentions using sensor feedback of wearer's gait pattern. This study aims to investigate the therapeutic effects of robot-assisted gait training with ankle dorsiflexion assistance. METHODS This was a double-blinded randomized controlled trial. Nineteen chronic stroke patients with motor impairment at ankle participated in 20-session robot-assisted gait training for about five weeks, with 30-min over-ground walking and stair ambulation practices. Robot-assisted AFO either provided active powered ankle assistance during swing phase in Robotic Group (n = 9), or torque impedance at ankle joint as passive AFO in Sham Group (n = 10). Functional assessments were performed before and after the 20-session gait training with 3-month Follow-up. Primary outcome measure was gait independency assessed by Functional Ambulatory Category (FAC). Secondary outcome measures were clinical scores including Fugl-Meyer Assessment (FMA), Modified Ashworth Scale (MAS), Berg Balance Scale (BBS), Timed 10-Meter Walk Test (10MWT), Six-minute Walk Test (SMWT), supplemented by gait analysis. All outcome measures were performed in unassisted gait after patients had taken off the robot-assisted AFO. Repeated-measures analysis of covariance was conducted to test the group differences referenced to clinical scores before training. RESULTS After 20-session robot-assisted gait training with ankle dorsiflexion assistance, the active ankle assistance in Robotic Group induced changes in gait pattern with improved gait independency (all patients FAC ≥ 5 post-training and 3-month follow-up), motor recovery, walking speed, and greater confidence in affected side loading response (vertical ground reaction force + 1.49 N/kg, peak braking force + 0.24 N/kg) with heel strike instead of flat foot touch-down at initial contact (foot tilting + 1.91°). Sham Group reported reduction in affected leg range of motion (ankle dorsiflexion - 2.36° and knee flexion - 8.48°) during swing. CONCLUSIONS Robot-assisted gait training with ankle dorsiflexion assistance could improve gait independency and help stroke patients developing confidence in weight acceptance, but future development of robot-assisted AFO should consider more lightweight and custom-fit design. TRIAL REGISTRATION ClinicalTrials.gov NCT02471248 . Registered 15 June 2015 retrospectively registered.
Collapse
Affiliation(s)
- Ling-Fung Yeung
- Department of Biomedical Engineering, The Chinese University of Hong Kong, ShaTin, Hong Kong
| | - Corinna Ockenfeld
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Man-Kit Pang
- Industrial Centre, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Hon-Wah Wai
- Industrial Centre, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Oi-Yan Soo
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong
| | - Sheung-Wai Li
- Division of Rehabilitation, Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, ShaTin, Hong Kong
| |
Collapse
|
11
|
Frullo JM, Elinger J, Pehlivan AU, Fitle K, Nedley K, Francisco GE, Sergi F, O'Malley MK. Effects of Assist-As-Needed Upper Extremity Robotic Therapy after Incomplete Spinal Cord Injury: A Parallel-Group Controlled Trial. Front Neurorobot 2017; 11:26. [PMID: 28659784 PMCID: PMC5469353 DOI: 10.3389/fnbot.2017.00026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/18/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Robotic rehabilitation of the upper limb following neurological injury has been supported through several large clinical studies for individuals with chronic stroke. The application of robotic rehabilitation to the treatment of other neurological injuries is less developed, despite indications that strategies successful for restoration of motor capability following stroke may benefit individuals with incomplete spinal cord injury (SCI) as well. Although recent studies suggest that robot-aided rehabilitation might be beneficial after incomplete SCI, it is still unclear what type of robot-aided intervention contributes to motor recovery. METHODS We developed a novel assist-as-needed (AAN) robotic controller to adjust challenge and robotic assistance continuously during rehabilitation therapy delivered via an upper extremity exoskeleton, the MAHI Exo-II, to train independent elbow and wrist joint movements. We further enrolled seventeen patients with incomplete spinal cord injury (AIS C and D levels) in a parallel-group balanced controlled trial to test the efficacy of the AAN controller, compared to a subject-triggered (ST) controller that does not adjust assistance or challenge levels continuously during therapy. The conducted study is a stage two, development-of-concept pilot study. RESULTS We validated the AAN controller in its capability of modulating assistance and challenge during therapy via analysis of longitudinal robotic metrics. For the selected primary outcome measure, the pre-post difference in ARAT score, no statistically significant change was measured in either group of subjects. Ancillary analysis of secondary outcome measures obtained via robotic testing indicates gradual improvement in movement quality during the therapy program in both groups, with the AAN controller affording greater increases in movement quality over the ST controller. CONCLUSION The present study demonstrates feasibility of subject-adaptive robotic therapy after incomplete spinal cord injury, but does not demonstrate gains in arm function occurring as a result of the robot-assisted rehabilitation program, nor differential gains obtained as a result of the developed AAN controller. Further research is warranted to better quantify the recovery potential provided by AAN control strategies for robotic rehabilitation of the upper limb following incomplete SCI. ClinicalTrials.gov registration number: NCT02803255.
Collapse
Affiliation(s)
- John Michael Frullo
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Jared Elinger
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Ali Utku Pehlivan
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Kyle Fitle
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | | | - Gerard E Francisco
- TIRR Memorial Hermann, Houston, TX, United States.,Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, TX, United States
| | - Fabrizio Sergi
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Marcia K O'Malley
- Department of Mechanical Engineering, Rice University, Houston, TX, United States.,TIRR Memorial Hermann, Houston, TX, United States
| |
Collapse
|
12
|
Choi YS, Lee KW, Lee JH, Kim SB, Park GT, Lee SJ. The Effect of an Upper Limb Rehabilitation Robot on Hemispatial Neglect in Stroke Patients. Ann Rehabil Med 2016; 40:611-9. [PMID: 27606267 PMCID: PMC5012972 DOI: 10.5535/arm.2016.40.4.611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/28/2015] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To investigate the effectiveness of an upper limb rehabilitation robot therapy on hemispatial neglect in stroke patients. METHODS Patients were randomly divided into an upper limb rehabilitation robot treatment group (robot group) and a control group. The patients in the robot group received left upper limb training using an upper limb rehabilitation robot. The patients sat on the right side of the robot, so that the monitor of the robot was located on the patients' left side. In this position, patients could focus continuously on the left side. The control group received conventional neglect treatment, such as visual scanning training and range of motion exercises, administered by occupational therapists. Both groups received their respective therapies for 30 minutes a day, 5 days a week for 3 weeks. Several tests were used to evaluate treatment effects before and after the 3-week treatment. RESULTS In total, 38 patients (20 in the robot group and 18 in the control group) completed the study. After completion of the treatment sessions, both groups showed significant improvements in the Motor-Free Visual Perception Test 3rd edition (MVPT-3), the line bisection test, the star cancellation test, the Albert's test, the Catherine Bergego scale, the Mini-Mental State Examination and the Korean version of Modified Barthel Index. The changes in all measurements showed no significant differences between the two groups. CONCLUSION This present study showed that the upper limb robot treatment had benefits for hemispatial neglect in stroke patients that were similar to conventional neglect treatment. The upper limb robot treatment could be a therapeutic option in the treatment of hemispatial neglect after stroke.
Collapse
Affiliation(s)
- Yoon Sik Choi
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine & Busan-Ulsan Regional Cardiocerebrovascular Center, Busan, Korea
| | - Kyeong Woo Lee
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine & Busan-Ulsan Regional Cardiocerebrovascular Center, Busan, Korea
| | - Jong Hwa Lee
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine & Busan-Ulsan Regional Cardiocerebrovascular Center, Busan, Korea
| | - Sang Beom Kim
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine & Busan-Ulsan Regional Cardiocerebrovascular Center, Busan, Korea
| | - Gyu Tae Park
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine & Busan-Ulsan Regional Cardiocerebrovascular Center, Busan, Korea
| | - Sook Joung Lee
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine & Busan-Ulsan Regional Cardiocerebrovascular Center, Busan, Korea
| |
Collapse
|
13
|
Feys P, Coninx K, Kerkhofs L, De Weyer T, Truyens V, Maris A, Lamers I. Robot-supported upper limb training in a virtual learning environment : a pilot randomized controlled trial in persons with MS. J Neuroeng Rehabil 2015. [PMID: 26202325 PMCID: PMC4511982 DOI: 10.1186/s12984-015-0043-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Despite the functional impact of upper limb dysfunction in multiple sclerosis (MS), effects of intensive exercise programs and specifically robot-supported training have been rarely investigated in persons with advanced MS. Aim To investigate the effects of additional robot-supported upper limb training in persons with MS compared to conventional treatment only. Methods Seventeen persons with MS (pwMS) (median Expanded Disability Status Scale of 8, range 3.5–8.5) were included in a pilot RCT comparing the effects of additional robot-supported training to conventional treatment only. Additional training consisted of 3 weekly sessions of 30 min interacting with the HapticMaster robot within an individualised virtual learning environment (I-TRAVLE). Clinical measures at body function (Hand grip strength, Motricity Index, Fugl-Meyer) and activity (Action Research Arm test, Motor Activity Log) level were administered before and after an intervention period of 8 weeks. The intervention group were also evaluated on robot-mediated movement tasks in three dimensions, providing active range of motion, movement duration and speed and hand-path ratio as indication of movement efficiency in the spatial domain. Non-parametric statistics were applied. Results PwMS commented favourably on the robot-supported virtual learning environment and reported functional training effects in daily life. Movement tasks in three dimensions, measured with the robot, were performed in less time and for the transporting and reaching movement tasks more efficiently. There were however no significant changes for any clinical measure in neither intervention nor control group although observational analyses of the included cases indicated large improvements on the Fugl-Meyer in persons with more marked upper limb dysfunction. Conclusion Robot-supported training lead to more efficient movement execution which was however, on group level, not reflected by significant changes on standard clinical tests. Persons with more marked upper limb dysfunction may benefit most from additional robot-supported training, but larger studies are needed. Trial registration This trial is registered within the registry Clinical Trials GOV (NCT02257606).
Collapse
Affiliation(s)
- Peter Feys
- REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3590, Diepenbeek, Belgium.
| | - Karin Coninx
- Expertise Centre for Digital Media - tUL - iMinds, Hasselt University, Wetenschapspark 2, 3590, Diepenbeek, Belgium.
| | - Lore Kerkhofs
- Rehabilitation and MS Center Overpelt, 3900, Overpelt, Belgium.
| | - Tom De Weyer
- Expertise Centre for Digital Media - tUL - iMinds, Hasselt University, Wetenschapspark 2, 3590, Diepenbeek, Belgium.
| | - Veronik Truyens
- Rehabilitation and MS Center Overpelt, 3900, Overpelt, Belgium.
| | - Anneleen Maris
- REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3590, Diepenbeek, Belgium.
| | - Ilse Lamers
- REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3590, Diepenbeek, Belgium.
| |
Collapse
|
14
|
Recovery of hand function with robot-assisted therapy in acute stroke patients: a randomized-controlled trial. Int J Rehabil Res 2015; 37:236-42. [PMID: 24769557 DOI: 10.1097/mrr.0000000000000059] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the last few years, not many studies on the use of robot-assisted therapy to recover hand function in acute stroke patients have been carried out. This randomized-controlled observer trial is aimed at evaluating the effects of intensive robot-assisted hand therapy compared with intensive occupational therapy in the early recovery phases after stroke with a 3-month follow-up. Twenty acute stroke patients at their first-ever stroke were enrolled and randomized into two groups. The experimental treatment was performed using the Amadeo Robotic System. Control treatment, instead, was carried out using occupational therapy executed by a trained physiotherapist. All participants received 20 sessions of treatment for 4 consecutive weeks (5 days/week). The following clinical scales, Fugl-Meyer Scale (FM), Medical Research Council Scale for Muscle Strength (hand flexor and extensor muscles) (MRC), Motricity Index (MI) and modified Ashworth Scale for wrist and hand muscles (MAS), were performed at baseline (T0), after 20 sessions (end of treatment) (T1) and at the 3-month follow-up (T2). The Barthel Index was assessed only at T0 and T1. Evidence of a significant improvement was shown by the Friedman test for the FM [experimental group (EG): P=0.0039, control group (CG): P<0.0001], Box and Block Test (EG: P=0.0185, CG: P=0.0086), MI (EG: P<0.0001, CG: P=0.0303) and MRC (EG: P<0.0001, CG: P=0.001) scales. These results provide further support to the generalized therapeutic impact of intensive robot-assisted treatment on hand recovery functions in individuals with acute stroke. The robotic rehabilitation treatment may contribute toward the recovery of hand motor function in acute stroke patients. The positive results obtained through the safe and reliable robotic rehabilitation treatment reinforce the recommendation to extend it to a larger clinical practice.
Collapse
|
15
|
Swinnen E, Beckwée D, Meeusen R, Baeyens JP, Kerckhofs E. Does Robot-Assisted Gait Rehabilitation Improve Balance in Stroke Patients? A Systematic Review. Top Stroke Rehabil 2014; 21:87-100. [DOI: 10.1310/tsr2102-87] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Boninger ML, Wechsler LR, Stein J. Robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery from stroke: updates and advances. Am J Phys Med Rehabil 2014; 93:S145-54. [PMID: 25313662 PMCID: PMC4197406 DOI: 10.1097/phm.0000000000000128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The aim of this study was to describe the current state and latest advances in robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery for stroke. DESIGN The authors of this summary recently reviewed this work as part of a national presentation. The article represents the information included in each area. RESULTS Each area has seen great advances and challenges as products move to market and experiments are ongoing. CONCLUSIONS Robotics, stem cells, and brain-computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial.
Collapse
Affiliation(s)
- Michael L Boninger
- From the Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pennsylvania (MLB); Human Engineering Research Laboratory, VA Pittsburgh Health Care System, Pennsylvania (MLB); Department of Neurology, University of Pittsburgh School of Medicine, Pennsylvania (LRW); Department of Rehabilitation and Regenerative Medicine, Columbia University College of Physicians and Surgeons, New York, New York (JS); and Division of Rehabilitation Medicine, Weill Cornell Medical College, New York, New York (JS)
| | | | | |
Collapse
|
17
|
Venkatakrishnan A, Francisco GE, Contreras-Vidal JL. Applications of Brain-Machine Interface Systems in Stroke Recovery and Rehabilitation. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2014; 2:93-105. [PMID: 25110624 PMCID: PMC4122129 DOI: 10.1007/s40141-014-0051-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Stroke is a leading cause of disability, significantly impacting the quality of life (QOL) in survivors, and rehabilitation remains the mainstay of treatment in these patients. Recent engineering and technological advances such as brain-machine interfaces (BMI) and robotic rehabilitative devices are promising to enhance stroke neu-rorehabilitation, to accelerate functional recovery and improve QOL. This review discusses the recent applications of BMI and robotic-assisted rehabilitation in stroke patients. We present the framework for integrated BMI and robotic-assisted therapies, and discuss their potential therapeutic, assistive and diagnostic functions in stroke rehabilitation. Finally, we conclude with an outlook on the potential challenges and future directions of these neurotechnologies, and their impact on clinical rehabilitation.
Collapse
Affiliation(s)
- Anusha Venkatakrishnan
- Laboratory for Non-invasive Brain–Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Gerard E. Francisco
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, TX, USA
- NeuroRecovery Research Center, TIRR Memorial Hermann Houston, Houston, TX, USA
| | - Jose L. Contreras-Vidal
- Laboratory for Non-invasive Brain–Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
18
|
Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil 2014; 11:3. [PMID: 24401110 PMCID: PMC4029785 DOI: 10.1186/1743-0003-11-3] [Citation(s) in RCA: 415] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/03/2014] [Indexed: 11/10/2022] Open
Abstract
The existing shortage of therapists and caregivers assisting physically disabled individuals at home is expected to increase and become serious problem in the near future. The patient population needing physical rehabilitation of the upper extremity is also constantly increasing. Robotic devices have the potential to address this problem as noted by the results of recent research studies. However, the availability of these devices in clinical settings is limited, leaving plenty of room for improvement. The purpose of this paper is to document a review of robotic devices for upper limb rehabilitation including those in developing phase in order to provide a comprehensive reference about existing solutions and facilitate the development of new and improved devices. In particular the following issues are discussed: application field, target group, type of assistance, mechanical design, control strategy and clinical evaluation. This paper also includes a comprehensive, tabulated comparison of technical solutions implemented in various systems.
Collapse
Affiliation(s)
- Paweł Maciejasz
- DEMAR - LIRMM, INRIA, University of Montpellier 2, CNRS, Montpellier, 161 rue Ada, 34095 Montpellier, France
- Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, ul. Św. A. Boboli 8, 02-525 Warszawa, Poland
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Jörg Eschweiler
- Chair of Medical Engineering (mediTEC), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Kurt Gerlach-Hahn
- Philips Chair of Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Arne Jansen-Troy
- Chair of Medical Engineering (mediTEC), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Steffen Leonhardt
- Philips Chair of Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| |
Collapse
|
19
|
Hand robotics rehabilitation: feasibility and preliminary results of a robotic treatment in patients with hemiparesis. Stroke Res Treat 2012; 2012:820931. [PMID: 23320252 PMCID: PMC3540892 DOI: 10.1155/2012/820931] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/23/2012] [Accepted: 11/29/2012] [Indexed: 11/18/2022] Open
Abstract
Background. No strongly clinical evidence about the use of hand robot-assisted therapy in stroke patients was demonstrated. This preliminary observer study was aimed at evaluating the efficacy of intensive robot-assisted therapy in hand function recovery, in the early phase after a stroke onset. Methods. Seven acute ischemic stroke patients at their first-ever stroke were enrolled. Treatment was performed using Amadeo robotic system (Tyromotion GmbH Graz, Austria). Each participant received, in addition to inpatients standard rehabilitative treatment, 20 sessions of robotic treatment for 4 consecutive weeks (5 days/week). Each session lasted for 40 minutes. The exercises were carried out as follows: passive modality (5 minutes), passive/plus modality (5 minutes), assisted therapy (10 minutes), and balloon (10 minutes). The following impairment and functional evaluations, Fugl-Meyer Scale (FM), Medical Research Council Scale for Muscle Strength (hand flexor and extensor muscles) (MRC), Motricity Index (MI), and modified Ashworth Scale for wrist and hand muscles (AS), were performed at the beginning (T0), after 10 sessions (T1), and at the end of the treatment (T2). The strength hand flexion and extension performed by Robot were assessed at T0 and T2. The Barthel Index and COMP (performance and satisfaction subscale) were assessed at T0 and T2. Results. Clinical improvements were found in all patients. No dropouts were recorded during the treatment and all subjects fulfilled the protocol. Evidence of a significant improvement was demonstrated by the Friedman test for the MRC (P < 0.0123). Evidence of an improvement was demonstrated for AS, FM, and MI. Conclusions. This original rehabilitation treatment could contribute to increase the hand motor recovery in acute stroke patients. The simplicity of the treatment, the lack of side effects, and the first positive results in acute stroke patients support the recommendations to extend the clinical trial of this treatment, in association with physiotherapy and/or occupational therapy.
Collapse
|