1
|
Zhu H, Kim BJ, Spizz G, Rothrock D, Yasmin R, Arida J, Grocholl J, Montagna R, Schwartz B, Trujillo S, Almeria S. Development and Evaluation/Verification of a Fully Automated Test Platform for the Rapid Detection of Cyclospora cayetanensis in Produce Matrices. Microorganisms 2023; 11:2805. [PMID: 38004816 PMCID: PMC10673183 DOI: 10.3390/microorganisms11112805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cyclosporiasis, caused by the coccidian parasite Cyclospora cayetanensis, has emerged as an increasing global public health concern, with the incidence of laboratory-confirmed domestically acquired cases in the US exceeding 10,000 since 2018. A recently published qPCR assay (Mit1C) based on a mitochondrial target gene showed high specificity and good sensitivity for the detection of C. cayetanensis in fresh produce. The present study shows the integration and verification of the same mitochondrial target into a fully automated and streamlined platform that performs DNA isolation, PCR, hybridization, results visualization, and reporting of results to simplify and reduce hands-on time for the detection of this parasite. By using the same primer sets for both the target of interest (i.e., Mit1C) and the internal assay control (IAC), we were able to rapidly migrate the previously developed Mit1C qPCR assay into the more streamlined and automated format Rheonix C. cayetanensisTM Assay. Once the best conditions for detection were optimized and the migration to the fully automated format was completed, we compared the performance of the automated platform against the original "bench top" Mit1C qPCR assay. The automated Rheonix C. cayetanensis Assay achieved equivalent performance characteristics as the original assay, including the same performance for both inclusion and exclusion panels, and it was able to detect as low as 5 C. cayetanensis oocysts in fresh produce while significantly reducing hands-on time. We expect that the streamlined assay can be used as a tool for outbreak and/or surveillance activities to detect the presence of C. cayetanensis in produce samples.
Collapse
Affiliation(s)
- Hui Zhu
- Rheonix, Inc., Ithaca, NY 14850, USA; (H.Z.); (B.J.K.); (G.S.); (D.R.); (R.Y.); (R.M.); (B.S.)
| | - Beum Jun Kim
- Rheonix, Inc., Ithaca, NY 14850, USA; (H.Z.); (B.J.K.); (G.S.); (D.R.); (R.Y.); (R.M.); (B.S.)
| | - Gwendolyn Spizz
- Rheonix, Inc., Ithaca, NY 14850, USA; (H.Z.); (B.J.K.); (G.S.); (D.R.); (R.Y.); (R.M.); (B.S.)
| | - Derek Rothrock
- Rheonix, Inc., Ithaca, NY 14850, USA; (H.Z.); (B.J.K.); (G.S.); (D.R.); (R.Y.); (R.M.); (B.S.)
| | - Rubina Yasmin
- Rheonix, Inc., Ithaca, NY 14850, USA; (H.Z.); (B.J.K.); (G.S.); (D.R.); (R.Y.); (R.M.); (B.S.)
| | - Joseph Arida
- Division of Virulence Assessment, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (J.A.); (J.G.); (S.T.)
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD 20742, USA
| | - John Grocholl
- Division of Virulence Assessment, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (J.A.); (J.G.); (S.T.)
| | - Richard Montagna
- Rheonix, Inc., Ithaca, NY 14850, USA; (H.Z.); (B.J.K.); (G.S.); (D.R.); (R.Y.); (R.M.); (B.S.)
| | - Brooke Schwartz
- Rheonix, Inc., Ithaca, NY 14850, USA; (H.Z.); (B.J.K.); (G.S.); (D.R.); (R.Y.); (R.M.); (B.S.)
| | - Socrates Trujillo
- Division of Virulence Assessment, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (J.A.); (J.G.); (S.T.)
| | - Sonia Almeria
- Division of Virulence Assessment, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (J.A.); (J.G.); (S.T.)
| |
Collapse
|
2
|
Lin TT, Wang JW, Shi QN, Wang HF, Pan JZ, Fang Q. An automated, fully-integrated nucleic acid analyzer based on microfluidic liquid handling robot technique. Anal Chim Acta 2023; 1239:340698. [PMID: 36628766 DOI: 10.1016/j.aca.2022.340698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
On-site nucleic acid testing (NAT) plays an important role for disease monitoring and pathogen diagnosis. In this work, we developed an automated and fully-integrated nucleic acid analyzer by combining the automated liquid handling robot technique with the microfluidic droplet-based real-time PCR assay technique. The present analyzer could achieve multiple operations including sample introduction, nucleic acid extraction based on magnetic solid-phase extraction, reverse transcription and, sample droplet generation, PCR amplification, real-time and dual fluorescence detection of droplet array. A strategy of constructing an integrated compact and low-cost system was adopted to minimize the analyzer size to 50 × 45 × 45 cm (length × width × height), and reduce the instrument cost to ca. $900 with a single analysis cost less than $5. A simple chip was also designed to pre-load reagents and carry oil-covered PCR reaction droplets. We applied the analyzer to identify eight types of influenza pathogens in human throat swabs, and the results were consistent with the colloidal gold method.
Collapse
Affiliation(s)
- Tong-Tong Lin
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Wei Wang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Nuan Shi
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Feng Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China.
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China; Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310007, China; College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Sabalza M, Yasmin R, Barber CA, Castro T, Malamud D, Kim BJ, Zhu H, Montagna RA, Abrams WR. Detection of Zika virus using reverse-transcription LAMP coupled with reverse dot blot analysis in saliva. PLoS One 2018; 13:e0192398. [PMID: 29401479 PMCID: PMC5798782 DOI: 10.1371/journal.pone.0192398] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022] Open
Abstract
In recent years, there have been increasing numbers of infectious disease outbreaks that spread rapidly to population centers resulting from global travel, population vulnerabilities, environmental factors, and ecological disasters such as floods and earthquakes. Some examples of the recent outbreaks are the Ebola epidemic in West Africa, Middle East respiratory syndrome coronavirus (MERS-Co) in the Middle East, and the Zika outbreak through the Americas. We have created a generic protocol for detection of pathogen RNA and/or DNA using loop-mediated isothermal amplification (LAMP) and reverse dot-blot for detection (RDB) and processed automatically in a microfluidic device. In particular, we describe how a microfluidic assay to detect HIV viral RNA was converted to detect Zika virus (ZIKV) RNA. We first optimized the RT-LAMP assay to detect ZIKV RNA using a benchtop isothermal amplification device. Then we implemented the assay in a microfluidic device that will allow analyzing 24 samples simultaneously and automatically from sample introduction to detection by RDB technique. Preliminary data using saliva samples spiked with ZIKV showed that our diagnostic system detects ZIKV RNA in saliva. These results will be validated in further experiments with well-characterized ZIKV human specimens of saliva. The described strategy and methodology to convert the HIV diagnostic assay and platform to a ZIKV RNA detection assay provides a model that can be readily utilized for detection of the next emerging or re-emerging infectious disease.
Collapse
Affiliation(s)
- Maite Sabalza
- Department of Basic Sciences, New York University College of Dentistry, New York, New York, United States of America
- * E-mail:
| | - Rubina Yasmin
- Rheonix, Inc., Ithaca, New York, United States of America
| | - Cheryl A. Barber
- Department of Basic Sciences, New York University College of Dentistry, New York, New York, United States of America
| | - Talita Castro
- Department of Basic Sciences, New York University College of Dentistry, New York, New York, United States of America
- Stomatology Department, School of Dentistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Daniel Malamud
- Department of Basic Sciences, New York University College of Dentistry, New York, New York, United States of America
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Beum Jun Kim
- Rheonix, Inc., Ithaca, New York, United States of America
| | - Hui Zhu
- Rheonix, Inc., Ithaca, New York, United States of America
| | | | - William R. Abrams
- Department of Basic Sciences, New York University College of Dentistry, New York, New York, United States of America
| |
Collapse
|
4
|
Gliddon HD, Herberg JA, Levin M, Kaforou M. Genome-wide host RNA signatures of infectious diseases: discovery and clinical translation. Immunology 2017; 153:171-178. [PMID: 28921535 PMCID: PMC5765383 DOI: 10.1111/imm.12841] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022] Open
Abstract
The use of whole blood gene expression to derive diagnostic biomarkers capable of distinguishing between phenotypically similar diseases holds great promise but remains a challenge. Differential gene expression analysis is used to identify the key genes that undergo changes in expression relative to healthy individuals, as well as to patients with other diseases. These key genes can act as diagnostic, prognostic and predictive markers of disease. Gene expression ‘signatures’ in the blood hold the potential to be used for the diagnosis of infectious diseases, where current diagnostics are unreliable, ineffective or of limited potential. For diagnostic tests based on RNA signatures to be useful clinically, the first step is to identify the minimum set of gene transcripts that accurately identify the disease in question. The second requirement is rapid and cost‐effective detection of the gene expression levels. Signatures have been described for a number of infectious diseases, but ‘clinic‐ready’ technologies for RNA detection from clinical samples are limited, though existing methods such as RT‐PCR are likely to be superseded by a number of emerging technologies, which may form the basis of the translation of gene expression signatures into routine diagnostic tests for a range of disease states.
Collapse
Affiliation(s)
- Harriet D Gliddon
- London Centre for Nanotechnology, University College London, London, UK
| | | | - Michael Levin
- Department of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
5
|
Yasmin R, Zhu H, Chen Z, Montagna RA. A modifiable microarray-based universal sensor: providing sample-to-results automation. Heliyon 2016; 2:e00179. [PMID: 27812551 PMCID: PMC5078625 DOI: 10.1016/j.heliyon.2016.e00179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/22/2016] [Accepted: 10/11/2016] [Indexed: 12/30/2022] Open
Abstract
A microfluidic system consisting of generic single use cartridges which interface with a workstation allows the automatic performance of all necessary sample preparation, PCR analysis and interpretation of multiplex PCR assays. The cartridges contain a DNA array with 20 different 16mer DNA “universal” probes immobilized at defined locations. PCR amplicons can be detected via hybridization of user-defined “reporter” probes that are complementary at their 3′ termini to one or more of the universal probes and complementary to the target amplicons at their 5′ termini. The system was able to detect single-plex and multiplex PCR amplicons from various infectious agents as well as wild type and mutant alleles of single nucleotide polymorphisms. The system's ease of use was further demonstrated by converting a published PCR assay for the detection of Mycobacterium genitalium in a fully automated manner. Excellent correlation between traditional manual methods and the automated analysis performed by the workstation suggests that the system can provide a means to easily design and implement a variety of customized PCR-based assays. The system will be useful to researchers or clinical investigators seeking to develop their own user defined assays. As the U.S. FDA continues to pursue regulatory oversight of LDTs, the system would also allow labs to continue to develop compliant assays.
Collapse
Affiliation(s)
| | - Hui Zhu
- Rheonix Inc., 10 Brown Road, Ithaca, NY 14850, USA
| | - Zongyuan Chen
- Rheonix Inc., 10 Brown Road, Ithaca, NY 14850, USA; Thermo Fisher Scientific, South San Francisco, CA, USA
| | | |
Collapse
|
6
|
A Systematic Review of Point of Care Testing for Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis. Infect Dis Obstet Gynecol 2016; 2016:4386127. [PMID: 27313440 PMCID: PMC4899593 DOI: 10.1155/2016/4386127] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/07/2016] [Indexed: 11/17/2022] Open
Abstract
Objectives. Systematic review of point of care (POC) diagnostic tests for sexually transmitted infections: Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), and Trichomonas vaginalis (TV). Methods. Literature search on PubMed for articles from January 2010 to August 2015, including original research in English on POC diagnostics for sexually transmitted CT, NG, and/or TV. Results. We identified 33 publications with original research on POC diagnostics for CT, NG, and/or TV. Thirteen articles evaluated test performance, yielding at least one test for each infection with sensitivity and specificity ≥90%. Each infection also had currently available tests with sensitivities <60%. Three articles analyzed cost effectiveness, and five publications discussed acceptability and feasibility. POC testing was acceptable to both providers and patients and was also demonstrated to be cost effective. Fourteen proof of concept articles introduced new tests. Conclusions. Highly sensitive and specific POC tests are available for CT, NG, and TV, but improvement is possible. Future research should focus on acceptability, feasibility, and cost of POC testing. While pregnant women specifically have not been studied, the results available in nonpregnant populations are encouraging for the ability to test and treat women in antenatal care to prevent adverse pregnancy and neonatal outcomes.
Collapse
|
7
|
Rapid, highly sensitive and highly specific gene detection by combining enzymatic amplification and DNA chip detection simultaneously. SENSING AND BIO-SENSING RESEARCH 2016. [DOI: 10.1016/j.sbsr.2016.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
8
|
Spizz G, Chen Z, Li P, McGuire IC, Klimkiewicz P, Zysling D, Yasmin R, Hungerford W, Thomas B, Wilding G, Mouchka G, Young L, Zhou P, Montagna RA. Determination of genotypes using a fully automated molecular detection system. Arch Pathol Lab Med 2015; 139:805-11. [PMID: 26030250 DOI: 10.5858/arpa.2014-0059-oa] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Although the value of pharmacogenomics to improve patient outcomes has become increasingly clear, adoption in medical practice has been slow, which can be attributed to several factors, including complicated and expensive testing procedures and required equipment, lack of training by private practice physicians, and reluctance of both private and commercial payers to reimburse for such testing. OBJECTIVES To evaluate a fully automated molecular detection system for human genotyping assays, starting with anticoagulated whole blood samples, and to perform all sample preparation, assay, and analysis steps automatically with actionable results reported by the system's software. DESIGN The genotypes of 254 random individuals were determined by performing bidirectional DNA sequencing, and that information was used to statistically train the imaging software of the automated molecular detection system to distinguish the 3 possible genotypes (ie, homozygous wild type, heterozygous, and homozygous mutant) at each of 3 different loci (CYP2C9*2, CYP2C9*3, and VKORC1). RESULTS The resulting software algorithm was able to correctly identify the genotypes of all 254 individuals (100%) evaluated without any further user analysis. CONCLUSIONS The EncompassMDx workstation (Rheonix, Inc, Ithaca, New York) is a molecular detection system that can automatically determine the genotypes of individuals in an unattended manner. Considerably less technical expertise was required to achieve results identical to those obtained using more complex, time-consuming, and expensive bidirectional DNA sequencing. This optimized system may dramatically simplify and reduce the costs of pharmacogenomics testing, thus leading to more-widespread use.
Collapse
Affiliation(s)
- Gwendolyn Spizz
- From Rheonix, Inc, Ithaca, New York (Drs Spizz, Chen, Li, McGuire, Zysling, Yasmin, Zhou, and Montagna; Mss Klimkiewicz and Hungerford; and Messrs Thomas, Mouchka, and Young); and the Department of Biostatistics, State University of New York, Buffalo (Dr Wilding). Dr Li is now with Thermo Fisher Scientific, San Francisco, California; Ms Klimkiewicz is now with the Rochester Institute of Technology, Rochester, New York; and Mr Young is now with INEng, LLC, Ithaca, New York
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gulley ML, Morgan DR. Molecular oncology testing in resource-limited settings. J Mol Diagn 2014; 16:601-11. [PMID: 25242061 PMCID: PMC4210462 DOI: 10.1016/j.jmoldx.2014.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/15/2014] [Accepted: 07/22/2014] [Indexed: 12/14/2022] Open
Abstract
Cancer prevalence and mortality are high in developing nations, where resources for cancer control are inadequate. Nearly one-quarter of cancers in resource-limited nations are infection related, and molecular assays can capitalize on this relationship by detecting pertinent pathogen genomes and human gene variants to identify those at highest risk for progression to cancer, to classify lesions, to predict effective therapy, and to monitor tumor burden over time. Prime examples are human papillomavirus in cervical neoplasia, Helicobacter pylori and Epstein-Barr virus in gastric adenocarcinoma and lymphoma, and hepatitis B or C virus in hepatocellular cancer. Research is underway to engineer devices that overcome social, economic, and technical barriers limiting effective laboratory support. Additional challenges include an educated workforce, infrastructure for quality metrics and record keeping, and funds to sustain molecular test services. The combination of well-designed interfaces, novel and robust electrochemical technology, and telemedicine tools will promote adoption by frontline providers. Fast turnaround is crucial for surmounting loss to follow-up, although increased use of cell phones, even in rural areas, enhances options for patient education and engagement. Links to a broadband network facilitate consultation and centralized storage of medical data. Molecular technology shows promise to address gaps in health care through rapid, user-friendly, and cost-effective devices reflecting clinical priorities in resource-poor areas.
Collapse
Affiliation(s)
- Margaret L Gulley
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.
| | - Douglas R Morgan
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
10
|
Molecular approaches to enhance surveillance of gonococcal antimicrobial resistance. Nat Rev Microbiol 2014; 12:223-9. [PMID: 24509781 DOI: 10.1038/nrmicro3217] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The best available data indicate that the world is heading towards a pandemic of extensively drug-resistant Neisseria gonorrhoeae. At the same time, clinical microbiology laboratories have moved away from using culture-based methods to diagnose gonorrhoea, thus undermining our ability to detect antimicrobial resistance (AMR) using current technologies. In this Opinion article, we discuss the problem of N. gonorrhoeae AMR, particularly emerging resistance to the cephalosporin ceftriaxone, outline current concerns about the surveillance of N. gonorrhoeae AMR and propose the use of molecular methods on a large scale to systematically enhance surveillance.
Collapse
|
11
|
Guarnaccia M, Gentile G, Alessi E, Schneider C, Petralia S, Cavallaro S. Is this the real time for genomics? Genomics 2014; 103:177-82. [DOI: 10.1016/j.ygeno.2014.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/30/2014] [Accepted: 02/11/2014] [Indexed: 01/22/2023]
|
12
|
Integrated amplification microarray system in a lateral flow cell for warfarin genotyping from saliva. Clin Chim Acta 2013; 429:198-205. [PMID: 24360850 DOI: 10.1016/j.cca.2013.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/30/2013] [Accepted: 12/09/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND Genetic polymorphisms in the CYP2C9 and VKORC1 genes have been linked to sensitivity of the anticoagulant drug warfarin. The aim of this study is to demonstrate a method for warfarin sensitivity genotyping using gel element microarray technology in a simplified workflow from sample collection to analysis and detection. METHODS We developed an integrated amplification microarray system combining PCR amplification, target labeling, and microarray hybridization within a single, closed-amplicon "lateral flow cell" for genotyping three single nucleotide polymorphisms (SNPs) that influence warfarin response. We combined nucleic acid extraction of saliva using the TruTip technology together with the lateral flow cell assay and with fully automated array detection and analysis. RESULTS The analytical performance of the assay was tested using 20 genotyped human genomic DNA samples and found to be sensitive down to 330 input genomic copies (1 ng). A follow-up pre-clinical evaluation was performed with 65 blinded saliva samples and the genotyping results were in agreement with those determined by bidirectional sequencing. CONCLUSIONS Combined with the use of non-invasive saliva samples, rapid DNA extraction, the lateral flow cell, automatic imaging and data analysis provides a simple and fast sample-to-answer microarray test for warfarin sensitivity genotyping.
Collapse
|
13
|
Microarray for Identification of the Chiropteran Host Species of Rabies Virus in Canada. MICROARRAYS 2013; 2:153-69. [PMID: 27605186 PMCID: PMC5003475 DOI: 10.3390/microarrays2020153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 11/16/2022]
Abstract
Species identification through genetic barcoding can augment traditional taxonomic methods, which rely on morphological features of the specimen. Such approaches are especially valuable when specimens are in poor condition or comprise very limited material, a situation that often applies to chiropteran (bat) specimens submitted to the Canadian Food Inspection Agency for rabies diagnosis. Coupled with phenotypic plasticity of many species and inconclusive taxonomic keys, species identification using only morphological traits can be challenging. In this study, a microarray assay with associated PCR of the mitochondrial cytochrome c oxidase subunit I (COI) gene was developed for differentiation of 14 bat species submitted to the Canadian Food Inspection Agency from 1985–2012 for rabies diagnosis. The assay was validated with a reference collection of DNA from 153 field samples, all of which had been barcoded previously. The COI gene from 152 samples which included multiple specimens of each target species were successfully amplified by PCR and accurately identified by the microarray. One sample that was severely decomposed failed to amplify with PCR primers developed in this study, but amplified weakly after switching to alternate primers and was accurately typed by the microarray. Thus, the chiropteran microarray was able to accurately differentiate between the 14 species of Canadian bats targeted. This PCR and microarray assay would allow unequivocal identification to species of most, if not all, bat specimens submitted for rabies diagnosis in Canada.
Collapse
|
14
|
Development of a generic microfluidic device for simultaneous detection of antibodies and nucleic acids in oral fluids. BIOMED RESEARCH INTERNATIONAL 2013; 2013:543294. [PMID: 23509739 PMCID: PMC3586469 DOI: 10.1155/2013/543294] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/30/2012] [Indexed: 12/03/2022]
Abstract
A prototype dual-path microfluidic device (Rheonix CARD) capable of performing simultaneously screening (antigen or antibody) and confirmatory (nucleic acid) detection of pathogens is described. The device fully integrates sample processing, antigen or antibody detection, and nucleic acid amplification and detection, demonstrating rapid and inexpensive “sample-to-result” diagnosis with performance comparable to benchtop analysis. For the chip design, a modular approach was followed allowing the optimization of individual steps in the sample processing process. This modular design provides great versatility accommodating different disease targets independently of the production method. In the detection module, a lateral flow (LF) protocol utilizing upconverting phosphor (UCP) reporters was employed. The nucleic acid (NA) module incorporates a generic microtube containing dry reagents. Lateral flow strips and PCR primers determine the target or disease that is diagnosed. Diagnosis of HIV infection was used as a model to investigate the simultaneous detection of both human antibodies against the virus and viral RNA. The serological result is available in less than 30 min, and the confirmation by RNA amplification takes another 60 min. This approach combines a core serological portable diagnostic with a nucleic acid-based confirmatory test.
Collapse
|