1
|
Peng B, Mohammed FS, Tang X, Liu J, Sheth KN, Zhou J. Nanotechnology approaches to drug delivery for the treatment of ischemic stroke. Bioact Mater 2025; 43:145-161. [PMID: 39386225 PMCID: PMC11462157 DOI: 10.1016/j.bioactmat.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Ischemic stroke is a major global public health concern that lacks effective treatment options. A significant challenge lies in delivering therapeutic agents to the brain due to the restrictive nature of the blood-brain barrier (BBB). The BBB's selectivity hampers the delivery of therapeutically relevant quantities of agents to the brain, resulting in a lack of FDA-approved pharmacotherapies for stroke. In this article, we review therapeutic agents that have been evaluated in clinical trials or are currently undergoing clinical trials. Subsequently, we survey strategies for synthesizing and engineering nanoparticles (NPs) for drug delivery to the ischemic brain. We then provide insights into the potential clinical translation of nanomedicine, offering a perspective on its transformative role in advancing stroke treatment strategies. In summary, existing literature suggests that drug delivery represents a major barrier for clinical translation of stroke pharmacotherapies. While nanotechnology has shown significant promise in addressing this challenge, further advancements aimed at improving delivery efficiency and simplifying formulations are necessary for successful clinical translation.
Collapse
Affiliation(s)
- Bin Peng
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Farrah S. Mohammed
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, New Haven, CT, 06510, USA
| | - Xiangjun Tang
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurosurgery, Taihe Hospital, Hubei, 442000, PR China
| | - Jia Liu
- Department of Neurosurgery, New Haven, CT, 06510, USA
| | - Kevin N. Sheth
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurology, Yale University, New Haven, CT, 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, New Haven, CT, 06510, USA
| |
Collapse
|
2
|
Yildiz SN, Entezari M, Paskeh MDA, Mirzaei S, Kalbasi A, Zabolian A, Hashemi F, Hushmandi K, Hashemi M, Raei M, Goharrizi MASB, Aref AR, Zarrabi A, Ren J, Orive G, Rabiee N, Ertas YN. Nanoliposomes as nonviral vectors in cancer gene therapy. MedComm (Beijing) 2024; 5:e583. [PMID: 38919334 PMCID: PMC11199024 DOI: 10.1002/mco2.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024] Open
Abstract
Nonviral vectors, such as liposomes, offer potential for targeted gene delivery in cancer therapy. Liposomes, composed of phospholipid vesicles, have demonstrated efficacy as nanocarriers for genetic tools, addressing the limitations of off-targeting and degradation commonly associated with traditional gene therapy approaches. Due to their biocompatibility, stability, and tunable physicochemical properties, they offer potential in overcoming the challenges associated with gene therapy, such as low transfection efficiency and poor stability in biological fluids. Despite these advancements, there remains a gap in understanding the optimal utilization of nanoliposomes for enhanced gene delivery in cancer treatment. This review delves into the present state of nanoliposomes as carriers for genetic tools in cancer therapy, sheds light on their potential to safeguard genetic payloads and facilitate cell internalization alongside the evolution of smart nanocarriers for targeted delivery. The challenges linked to their biocompatibility and the factors that restrict their effectiveness in gene delivery are also discussed along with exploring the potential of nanoliposomes in cancer gene therapy strategies by analyzing recent advancements and offering future directions.
Collapse
Affiliation(s)
| | - Maliheh Entezari
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mahshid Deldar Abad Paskeh
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Sepideh Mirzaei
- Department of BiologyFaculty of ScienceIslamic Azad UniversityScience and Research BranchTehranIran
| | - Alireza Kalbasi
- Department of PharmacyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Amirhossein Zabolian
- Department of OrthopedicsShahid Beheshti University of Medical SciencesTehranIran
| | - Farid Hashemi
- Department of Comparative BiosciencesFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Kiavash Hushmandi
- Department of Clinical Sciences InstituteNephrology and Urology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Mehrdad Hashemi
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehdi Raei
- Department of Epidemiology and BiostatisticsSchool of HealthBaqiyatallah University of Medical SciencesTehranIran
| | | | - Amir Reza Aref
- Belfer Center for Applied Cancer ScienceDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMassachusettsUSA
- Department of Translational SciencesXsphera Biosciences Inc.BostonMassachusettsUSA
| | - Ali Zarrabi
- Department of Biomedical EngineeringFaculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Jun Ren
- Shanghai Institute of Cardiovascular DiseasesDepartment of CardiologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Gorka Orive
- NanoBioCel Research GroupSchool of PharmacyUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- University Institute for Regenerative Medicine and Oral Implantology ‐ UIRMI (UPV/EHU‐Fundación Eduardo Anitua)Vitoria‐GasteizSpain
- Bioaraba, NanoBioCel Research GroupVitoria‐GasteizSpain
- The AcademiaSingapore Eye Research InstituteSingaporeSingapore
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityPerthWestern AustraliaAustralia
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM—Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
- UNAM−National Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
| |
Collapse
|
3
|
Gupta T, Sahoo RK, Singh H, Katke S, Chaurasiya A, Gupta U. Lipid-Based Nanocarriers in the Treatment of Glioblastoma Multiforme (GBM): Challenges and Opportunities. AAPS PharmSciTech 2023; 24:102. [PMID: 37041350 DOI: 10.1208/s12249-023-02555-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 03/13/2023] [Indexed: 04/13/2023] Open
Abstract
Glioblastoma multiforme (also known as glioblastoma; GBM) is one of the most malignant types of brain tumors that occurs in the CNS. Treatment strategies for glioblastoma are majorly comprised of surgical resection, radiotherapy, and chemotherapy along with combination therapy. Treatment of GBM is itself a tedious task but the involved barriers in GBM are one of the main impediments to move one step closer to the treatment of GBM. Basically, two of the barriers are of utmost importance in this regard, namely blood brain barrier (BBB) and blood brain tumor barrier (BBTB). This review will address different challenges and barriers in the treatment of GBM along with their etiology. The role and recent progress of lipid-based nanocarriers like liposomes, solid lipid nanocarriers (SLNs), nanostructured lipid carriers (NLCs), lipoplexes, and lipid hybrid carriers in the effective management of GBM will be discussed in detail.
Collapse
Affiliation(s)
- Tanisha Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Rakesh K Sahoo
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Himani Singh
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Sumeet Katke
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, 500078, India
| | - Akash Chaurasiya
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, 500078, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
4
|
Ma J, Dai L, Yu J, Cao H, Bao Y, Hu J, Zhou L, Yang J, Sofia A, Chen H, Wu F, Xie Z, Qian W, Zhan R. Tumor microenvironment targeting system for glioma treatment via fusion cell membrane coating nanotechnology. Biomaterials 2023; 295:122026. [PMID: 36731366 DOI: 10.1016/j.biomaterials.2023.122026] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The tumor microenvironment (TME), comprising cancer cells and stroma, plays a significant role in determining clinical outcomes, which makes targeting cancer cells in the TME an important area of research. One way in which cancer cells in the TME can be specifically targeted is by coating drug-encapsulated nanoparticles (NPs) with homotypic cancer cell membranes. However, incomplete targeting is inevitable for biomimetic nanoformulations coated with only cancer cell membranes because of the inherent heterogeneity of the TME. After observing the structural connection between glioma-associated stromal cells (GASCs) and glioma cells from a clinic, we designed a novel drug delivery system that targets the TME by coating polylactic-co-glycolic acid (PLGA) NPs with GASC-glioma cell fusion cell (SG cell) membranes. The resulting SGNPs inherited membrane proteins from both the glioma membrane and GASC membrane, significantly enhancing the tumor targeting efficiency compared to nanoformulations coated with cancer cell membranes alone. We further demonstrated that encapsulation of temozolomide (TMZ) improved the therapeutic efficacy of TMZ in both heterotopic and orthotopic glioma mouse models. Owing to its significant efficacy, our TME-targeting nanoplatform has potential for clinical applications in the treatment of various cancers.
Collapse
Affiliation(s)
- Junning Ma
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China; School of Medicine Zhejiang University, China.
| | - Lisi Dai
- Department of Pathology& Pathophysiology, and Department of Surgical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, China; School of Basic Medical Sciences Zhejiang University, China.
| | - Jianbo Yu
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Hui Cao
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Youmei Bao
- Department of Neurosurgery, School of Medicine, Yale University, USA
| | - JiaJia Hu
- Department of Nuclear Medicine, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Lihui Zhou
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Jiqi Yang
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Adame Sofia
- School of Medicine Zhejiang University, China
| | - Hongwei Chen
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Fan Wu
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Zhikai Xie
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Wenqi Qian
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Renya Zhan
- Department of Neurosurgery of First Affiliated Hospital, Zhejiang University School of Medicine, China.
| |
Collapse
|
5
|
Wu H, Gao X, Luo Y, Yu J, Long G, Jiang Z, Zhou J. Targeted Delivery of Chemo-Sonodynamic Therapy via Brain Targeting, Glutathione-Consumable Polymeric Nanoparticles for Effective Brain Cancer Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203894. [PMID: 35971187 PMCID: PMC9534955 DOI: 10.1002/advs.202203894] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 05/19/2023]
Abstract
Glioblastoma (GBM) is the most aggressive tumor of the central nervous system and remains universally lethal due to lack of effective treatment options and their inefficient delivery to the brain. Here the development of multifunctional polymeric nanoparticles (NPs) for effective treatment of GBM is reported. The NPs are synthesized using a novel glutathione (GSH)-reactive poly (2,2″-thiodiethylene 3,3″-dithiodipropionate) (PTD) polymer and engineered for brain penetration through neutrophil elastase-triggered shrinkability, iRGD-mediated targeted delivery, and lexiscan-induced autocatalysis. It is found that the resulting lexiscan-loaded, iRGD-conjugated, shrinkable PTD NPs, or LiPTD NPs, efficiently penetrate brain tumors with high specificity after intravenous administration. Furthermore, it is demonstrated that LiPTD NPs are capable of efficient encapsulation and delivery of chemotherapy doxorubicin and sonosensitizer chlorin e6 to achieve combined chemotherapy and sonodynamic therapy (SDT). It is demonstrated that the capability of GSH depletion of LiPTD NPs further augments the tumor cell killing effect triggered by SDT. As a result, treatment with LiPTD NPs effectively inhibits tumor growth and prolongs the survival of tumor-bearing mice. This study may suggest a potential new approach for effective GBM treatment.
Collapse
Affiliation(s)
- Haoan Wu
- Department of NeurosurgeryYale UniversityNew HavenCT06510USA
| | - Xingchun Gao
- Department of NeurosurgeryYale UniversityNew HavenCT06510USA
| | - Yuanyuan Luo
- Department of NeurosurgeryYale UniversityNew HavenCT06510USA
| | - Jiang Yu
- Department of NeurosurgeryYale UniversityNew HavenCT06510USA
| | - Gretchen Long
- Department of Biomedical EngineeringYale UniversityNew HavenCT06510USA
| | - Zhaozhong Jiang
- Department of Biomedical EngineeringYale UniversityNew HavenCT06510USA
- Integrated Science and Technology CenterYale University600 West Campus DriveWest HavenCT06516USA
| | - Jiangbing Zhou
- Department of NeurosurgeryYale UniversityNew HavenCT06510USA
- Department of Biomedical EngineeringYale UniversityNew HavenCT06510USA
| |
Collapse
|
6
|
Ye Z, Gao L, Cai J, Wang Y, Li Y, Tong S, Yan T, Sun Q, Qi Y, Xu Y, Jiang H, Zhang S, Zhao L, Zhang S, Chen Q. Esterase-responsive and size-optimized prodrug nanoparticles for effective intracranial drug delivery and glioblastoma treatment. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102581. [PMID: 35811067 DOI: 10.1016/j.nano.2022.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/03/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Glioblastoma multiforme (GBM) is the intracranial malignancy with the highest rates of morbidity and mortality. Chemotherapy is often ineffective against GBM due to the presence of the blood-brain barrier (BBB); however, the application of nanotechnology is expected to overcome this limitation. Poly(lactic-co-glycolic acid) (PLGA) is a degradable and nontoxic functional polymer with good biocompatibility that is widely used in the pharmaceutical industry. Previous studies have shown that the ability of PLGA nanoparticles (NPs) to penetrate the BBB is largely determined by their size; however, determination of the optimal PLGA NP size requires further research. Here, we report a tandutinib-based prodrug (proTan), which responds to the GBM microenvironment, that was combined with NPs to overcome the BBB. AMD3100-PLGA NPs loaded with proTan inhibited tumor growth and effectively prolonged the survival of tumor-bearing mice.
Collapse
Affiliation(s)
- Zhang Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiayang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yixuan Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yong Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shiao Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Tengfeng Yan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Si Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Linyao Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
7
|
Ntafoulis I, Koolen SLW, Leenstra S, Lamfers MLM. Drug Repurposing, a Fast-Track Approach to Develop Effective Treatments for Glioblastoma. Cancers (Basel) 2022; 14:3705. [PMID: 35954371 PMCID: PMC9367381 DOI: 10.3390/cancers14153705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Glioblastoma (GBM) remains one of the most difficult tumors to treat. The mean overall survival rate of 15 months and the 5-year survival rate of 5% have not significantly changed for almost 2 decades. Despite progress in understanding the pathophysiology of the disease, no new effective treatments to combine with radiation therapy after surgical tumor debulking have become available since the introduction of temozolomide in 1999. One of the main reasons for this is the scarcity of compounds that cross the blood-brain barrier (BBB) and reach the brain tumor tissue in therapeutically effective concentrations. In this review, we focus on the role of the BBB and its importance in developing brain tumor treatments. Moreover, we discuss drug repurposing, a drug discovery approach to identify potential effective candidates with optimal pharmacokinetic profiles for central nervous system (CNS) penetration and that allows rapid implementation in clinical trials. Additionally, we provide an overview of repurposed candidate drug currently being investigated in GBM at the preclinical and clinical levels. Finally, we highlight the importance of phase 0 trials to confirm tumor drug exposure and we discuss emerging drug delivery technologies as an alternative route to maximize therapeutic efficacy of repurposed candidate drug.
Collapse
Affiliation(s)
- Ioannis Ntafoulis
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| | - Stijn L. W. Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands;
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Sieger Leenstra
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| | - Martine L. M. Lamfers
- Brain Tumor Center, Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (I.N.); (S.L.)
| |
Collapse
|
8
|
Sadeghipour N, Kumar SU, Massoud TF, Paulmurugan R. A rationally identified panel of microRNAs targets multiple oncogenic pathways to enhance chemotherapeutic effects in glioblastoma models. Sci Rep 2022; 12:12017. [PMID: 35835978 PMCID: PMC9283442 DOI: 10.1038/s41598-022-16219-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor. Available treatments have limited success because most patients develop chemoresistance. Alternative strategies are required to improve anticancer effects of current chemotherapeutics while limiting resistance. Successful targeting of microRNAs (miRNAs) as regulators of gene expression can help reprogram GBM cells to better respond to chemotherapy. We aimed to identify a panel of miRNAs that target multiple oncogenic pathways to improve GBM therapy. We first identified differentially expressed miRNAs and tested if their target genes play central roles in GBM signaling pathways by analyzing data in the Gene Expression Omnibus and The Cancer Genome Atlas databases. We then studied the effects of different combinations of these miRNAs in GBM cells by delivering synthetic miRNAs using clinically compatible PLGA-PEG nanoparticles prior to treatment with temozolomide (TMZ) or doxorubicin (DOX). The successful miRNA panel was tested in mice bearing U87-MG cells co-treated with TMZ. We identified a panel of five miRNAs (miRNA-138, miRNA-139, miRNA-218, miRNA-490, and miRNA-21) and their oncogenic targets (CDK6, ZEB1, STAT3, TGIF2, and SMAD7) that cover four different signaling pathways (cell proliferation and apoptotic signaling, invasion and metastasis, cytokine signaling, and stemness) in GBM. We observed significant in vitro and in vivo enhancement of therapeutic efficiency of TMZ and DOX in GBM models. The proposed combination therapy using rationally selected miRNAs and chemotherapeutic drugs is effective owing to the ability of this specific miRNA panel to better target multiple genes associated with the hallmarks of cancer.
Collapse
Affiliation(s)
- Negar Sadeghipour
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
- Cellular Pathway Imaging Laboratory (CPIL), The Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sukumar Uday Kumar
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
- Cellular Pathway Imaging Laboratory (CPIL), The Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tarik F Massoud
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA.
- Cellular Pathway Imaging Laboratory (CPIL), The Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA.
- Laboratory of Experimental and Molecular Neuroimaging (LEMNI), Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94304, USA.
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA.
- Cellular Pathway Imaging Laboratory (CPIL), The Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA.
- Cellular Pathway Imaging Laboratory (CPIL), Molecular Imaging Program at Stanford (MIPS), Canary Center for Cancer Early Detection at Stanford, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
9
|
Wu H, Peng B, Mohammed FS, Gao X, Qin Z, Sheth KN, Zhou J, Jiang Z. Brain Targeting, Antioxidant Polymeric Nanoparticles for Stroke Drug Delivery and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107126. [PMID: 35306743 PMCID: PMC9167795 DOI: 10.1002/smll.202107126] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/02/2022] [Indexed: 05/05/2023]
Abstract
Ischemic stroke is a leading cause of death and disability and remains without effective treatment options. Improved treatment of stroke requires efficient delivery of multimodal therapy to ischemic brain tissue with high specificity. Here, this article reports the development of multifunctional polymeric nanoparticles (NPs) for both stroke treatment and drug delivery. The NPs are synthesized using an reactive oxygen species (ROS)-reactive poly (2,2'-thiodiethylene 3,3'-thiodipropionate) (PTT) polymer and engineered for brain penetration through both thrombin-triggered shrinkability and AMD3100-mediated targeted delivery. It is found that the resulting AMD3100-conjugated, shrinkable PTT NPs, or ASPTT NPs, efficiently accumulate in the ischemic brain tissue after intravenous administration and function as antioxidant agents for effective stroke treatment. This work shows ASPTT NPs are capable of efficient encapsulation and delivery of glyburide to achieve anti-edema and antioxidant combination therapy, resulting in therapeutic benefits significantly greater than those by either the NPs or glyburide alone. Due to their high efficiency in brain penetration and excellent antioxidant bioactivity, ASPTT NPs have the potential to be utilized to deliver various therapeutic agents to the brain for effective stroke treatment.
Collapse
Affiliation(s)
- Haoan Wu
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Bin Peng
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Farrah S Mohammed
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| | - Xingchun Gao
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Zhenpeng Qin
- Department of Mechanical Engineering, Department of Bioengineering, Center for Advanced Pain Studies, University of Texas, Dallas-UTD, TX, 75080, USA
| | - Kevin N Sheth
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| | - Zhaozhong Jiang
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
- Integrated Science and Technology Center, Yale University, 600 West Campus Drive, West Haven, CT, 06516, USA
| |
Collapse
|
10
|
Mathew EN, Berry BC, Yang HW, Carroll RS, Johnson MD. Delivering Therapeutics to Glioblastoma: Overcoming Biological Constraints. Int J Mol Sci 2022; 23:ijms23031711. [PMID: 35163633 PMCID: PMC8835860 DOI: 10.3390/ijms23031711] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma multiforme is the most lethal intrinsic brain tumor. Even with the existing treatment regimen of surgery, radiation, and chemotherapy, the median survival time is only 15–23 months. The invasive nature of this tumor makes its complete removal very difficult, leading to a high recurrence rate of over 90%. Drug delivery to glioblastoma is challenging because of the molecular and cellular heterogeneity of the tumor, its infiltrative nature, and the blood–brain barrier. Understanding the critical characteristics that restrict drug delivery to the tumor is necessary to develop platforms for the enhanced delivery of effective treatments. In this review, we address the impact of tumor invasion, the molecular and cellular heterogeneity of the tumor, and the blood–brain barrier on the delivery and distribution of drugs using potential therapeutic delivery options such as convection-enhanced delivery, controlled release systems, nanomaterial systems, peptide-based systems, and focused ultrasound.
Collapse
|
11
|
Liu F, Peng B, Li M, Ma J, Deng G, Zhang S, Sheu WC, Zou P, Wu H, Liu J, Chen AT, Mohammed FS, Zhou J. Targeted disruption of tumor vasculature via polyphenol nanoparticles to improve brain cancer treatment. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:100691. [PMID: 35199059 PMCID: PMC8863382 DOI: 10.1016/j.xcrp.2021.100691] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Despite being effective for many other solid tumors, traditional anti-angiogenic therapy has been shown to be insufficient for the treatment of malignant glioma. Here, we report the development of polyphenol nanoparticles (NPs), which not only inhibit the formation of new vessels but also enable targeted disruption of the existing tumor vasculature. The NPs are synthesized through a combinatory iron-coordination and polymer-stabilization approach, which allows for high drug loading and intrinsic tumor vessel targeting. We study a lead NP consisting of quercetin and find that the NP after intravenous administration preferentially binds to VEGFR2, which is overexpressed in tumor vasculature. We demonstrate that the binding is mediated by quercetin, and the interaction of NPs with VEGFR2 leads to disruption of the existing tumor vasculature and inhibition of new vessel development. As a result, systemic treatment with the NPs effectively inhibits tumor growth and increases drug delivery to tumors.
Collapse
Affiliation(s)
- Fuyao Liu
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Bin Peng
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Miao Li
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Junning Ma
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Gang Deng
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Shenqi Zhang
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Wendy C. Sheu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Pan Zou
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Haoan Wu
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Jun Liu
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Ann T. Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Farrah S. Mohammed
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
- Lead contact
- Correspondence:
| |
Collapse
|
12
|
Lee MJ, Lee I, Wang K. Recent Advances in RNA Therapy and Its Carriers to Treat the Single-Gene Neurological Disorders. Biomedicines 2022; 10:biomedicines10010158. [PMID: 35052837 PMCID: PMC8773368 DOI: 10.3390/biomedicines10010158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
The development of new sequencing technologies in the post-genomic era has accelerated the identification of causative mutations of several single gene disorders. Advances in cell and animal models provide insights into the underlining pathogenesis, which facilitates the development and maturation of new treatment strategies. The progress in biochemistry and molecular biology has established a new class of therapeutics—the short RNAs and expressible long RNAs. The sequences of therapeutic RNAs can be optimized to enhance their stability and translatability with reduced immunogenicity. The chemically-modified RNAs can also increase their stability during intracellular trafficking. In addition, the development of safe and high efficiency carriers that preserves the integrity of therapeutic RNA molecules also accelerates the transition of RNA therapeutics into the clinic. For example, for diseases that are caused by genetic defects in a specific protein, an effective approach termed “protein replacement therapy” can provide treatment through the delivery of modified translatable mRNAs. Short interference RNAs can also be used to treat diseases caused by gain of function mutations or restore the splicing aberration defects. Here we review the applications of newly developed RNA-based therapeutics and its delivery and discuss the clinical evidence supporting the potential of RNA-based therapy in single-gene neurological disorders.
Collapse
Affiliation(s)
- Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, Taipei 10012, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10012, Taiwan
| | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA 98109, USA;
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA;
- Correspondence: ; Tel.: +1-206-732-1336
| |
Collapse
|
13
|
Krolicki L, Kunikowska J, Bruchertseifer F, Koziara H, Morgenstern A, Krolicki B, Rosiak E, Pawlak D, Merlo A. Nuclear medicine therapy of CNS tumors. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Himes BT, Geiger PA, Ayasoufi K, Bhargav AG, Brown DA, Parney IF. Immunosuppression in Glioblastoma: Current Understanding and Therapeutic Implications. Front Oncol 2021; 11:770561. [PMID: 34778089 PMCID: PMC8581618 DOI: 10.3389/fonc.2021.770561] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults an carries and carries a terrible prognosis. The current regiment of surgical resection, radiation, and chemotherapy has remained largely unchanged in recent years as new therapeutic approaches have struggled to demonstrate benefit. One of the most challenging hurdles to overcome in developing novel treatments is the profound immune suppression found in many GBM patients. This limits the utility of all manner of immunotherapeutic agents, which have revolutionized the treatment of a number of cancers in recent years, but have failed to show similar benefit in GBM therapy. Understanding the mechanisms of tumor-mediated immune suppression in GBM is critical to the development of effective novel therapies, and reversal of this effect may prove key to effective immunotherapy for GBM. In this review, we discuss the current understanding of tumor-mediated immune suppression in GBM in both the local tumor microenvironment and systemically. We also discuss the effects of current GBM therapy on the immune system. We specifically explore some of the downstream effectors of tumor-driven immune suppression, particularly myeloid-derived suppressor cells (MDSCs) and other immunosuppressive monocytes, and the manner by which GBM induces their formation, with particular attention to the role of GBM-derived extracellular vesicles (EVs). Lastly, we briefly review the current state of immunotherapy for GBM and discuss additional hurdles to overcome identification and implementation of effective therapeutic strategies.
Collapse
Affiliation(s)
- Benjamin T Himes
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Philipp A Geiger
- Department of Neurosurgery, University Hospital Innsbruck, Tirol, Austria
| | | | - Adip G Bhargav
- Department of Neurosurgery, University of Kansas, Kansas City, KS, United States
| | - Desmond A Brown
- Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Immunology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
15
|
Liu F, Wu H, Peng B, Zhang S, Ma J, Deng G, Zou P, Liu J, Chen AT, Li D, Bellone S, Santin AD, Moliterno J, Zhou J. Vessel-Targeting Nanoclovers Enable Noninvasive Delivery of Magnetic Hyperthermia-Chemotherapy Combination for Brain Cancer Treatment. NANO LETTERS 2021; 21:8111-8118. [PMID: 34597054 DOI: 10.1021/acs.nanolett.1c02459] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite being promising, the clinical application of magnetic hyperthermia for brain cancer treatment is limited by the requirement of highly invasive intracranial injections. To overcome this limitation, here we report the development of gallic acid-coated magnetic nanoclovers (GA-MNCs), which allow not only for noninvasive delivery of magnetic hyperthermia but also for targeted delivery of systemic chemotherapy to brain tumors. GA-MNCs are composed of clover-shaped MNCs in the core, which can induce magnetic heat in high efficiency, and polymerized GA on the shell, which enables tumor vessel-targeting. We demonstrate that intravenous administration of GA-MNCs following alternating magnetic field exposure effectively inhibited brain cancer development and preferentially disrupted tumor vasculature, making it possible to efficiently deliver systemic chemotherapy for further improved efficacy. Due to the noninvasive nature and high efficiency in killing tumor cells and enhancing systemic drug delivery, GA-MNCs have the potential to be translated for improved treatment of brain cancer.
Collapse
Affiliation(s)
- Fuyao Liu
- Department of Neurosurgery, Yale University, New Haven, Connecticut 06510, United States
| | - Haoan Wu
- Department of Neurosurgery, Yale University, New Haven, Connecticut 06510, United States
| | - Bin Peng
- Department of Neurosurgery, Yale University, New Haven, Connecticut 06510, United States
| | - Shenqi Zhang
- Department of Neurosurgery, Yale University, New Haven, Connecticut 06510, United States
| | - Junning Ma
- Department of Neurosurgery, Yale University, New Haven, Connecticut 06510, United States
| | - Gang Deng
- Department of Neurosurgery, Yale University, New Haven, Connecticut 06510, United States
| | - Pan Zou
- Department of Neurosurgery, Yale University, New Haven, Connecticut 06510, United States
| | - Jun Liu
- Department of Neurosurgery, Yale University, New Haven, Connecticut 06510, United States
| | - Ann T Chen
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06510, United States
| | - Dongfang Li
- Department of Neurosurgery, Yale University, New Haven, Connecticut 06510, United States
| | - Stefania Bellone
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, Connecticut 06510, United States
| | - Alessandro Davide Santin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, Connecticut 06510, United States
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale University, New Haven, Connecticut 06510, United States
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, Connecticut 06510, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06510, United States
| |
Collapse
|
16
|
Xie Y, Ma C, Yang X, Wang J, Long G, Zhou J. Phytonanomaterials as therapeutic agents and drug delivery carriers. Adv Drug Deliv Rev 2021; 176:113868. [PMID: 34303754 PMCID: PMC8482412 DOI: 10.1016/j.addr.2021.113868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/12/2021] [Accepted: 07/11/2021] [Indexed: 11/21/2022]
Abstract
Medicinal plants have been a major resource for drug discovery. Emerging evidence shows that in addition to pharmacologically active components, medicinal plants also contain phytochemical nanomaterials, or phytonanomaterials, which form nanoparticles for drug delivery. In this review, we examine the evidence supporting the existence of phytonanomaterials. Next, we review identification, isolation, and classification of phytonanomaterials, characteristics of phytonanomaterial-derived nanoparticles, and molecular mechanisms of phytonanomaterial assembly. We will then summarize the current progress in exploring phytonanomaterial-derived NPs as therapeutic agents and drug delivery carriers for disease treatment. Last, we will provide perspectives on future discovery and applications of phytonanomaterials.
Collapse
Affiliation(s)
- Ying Xie
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Chao Ma
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jiacheng Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China
| | - Gretchen Long
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
17
|
Satapathy MK, Yen TL, Jan JS, Tang RD, Wang JY, Taliyan R, Yang CH. Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB. Pharmaceutics 2021; 13:1183. [PMID: 34452143 PMCID: PMC8402065 DOI: 10.3390/pharmaceutics13081183] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) plays a vital role in the protection and maintenance of homeostasis in the brain. In this way, it is an interesting target as an interface for various types of drug delivery, specifically in the context of the treatment of several neuropathological conditions where the therapeutic agents cannot cross the BBB. Drug toxicity and on-target specificity are among some of the limitations associated with current neurotherapeutics. In recent years, advances in nanodrug delivery have enabled the carrier system containing the active therapeutic drug to target the signaling pathways and pathophysiology that are closely linked to central nervous system (CNS) disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), brain tumor, epilepsy, ischemic stroke, and neurodegeneration. At present, among the nano formulations, solid lipid nanoparticles (SLNs) have emerged as a putative drug carrier system that can deliver the active therapeutics (drug-loaded SLNs) across the BBB at the target site of the brain, offering a novel approach with controlled drug delivery, longer circulation time, target specificity, and higher efficacy, and more importantly, reducing toxicity in a biomimetic way. This paper highlights the synthesis and application of SLNs as a novel nontoxic formulation strategy to carry CNS drugs across the BBB to improve the use of therapeutics agents in treating major neurological disorders in future clinics.
Collapse
Affiliation(s)
- Mantosh Kumar Satapathy
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
| | - Ting-Lin Yen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
- Department of Medical Research, Cathay General Hospital, Taipei 22174, Taiwan
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
| | - Ruei-Dun Tang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan;
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan;
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
| | - Rajeev Taliyan
- Department of Pharmacy, Neuropsychopharmacology Division, Birla Institute of Technology and Science, Pilani 333031, India;
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
18
|
Tran K, Brice R, Yao L. Bioscaffold-based study of glioblastoma cell behavior and drug delivery for tumor therapy. Neurochem Int 2021; 147:105049. [PMID: 33945833 DOI: 10.1016/j.neuint.2021.105049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 01/04/2023]
Abstract
Glioblastoma multiforme (GBM) is a severe form of brain cancer with an average five-year survival rate of 6.7%. Current treatment strategies include surgical resection of the tumor area and lining the lesion site with therapeutics, which offer only a moderate impact on increasing survival rates. Drug-testing models based on the monolayer cell culture method may partially explain the lack of advancement in effective GBM treatment, because this model is limited in its ability to show heterogeneous cell-cell and cell-environment interactions as tumor cells in the in vivo state. The development of bioscaffold-based culture models is an important improvement in GBM research, preclinical trials, and targeted drug testing, through better mimicking of the heterogeneity of tumor environmental conditions. A major hurdle towards better GBM outcomes is in delivering medication across the blood-brain barrier (BBB), which normally prevents the crossing of materials into the treatment site. The delivery of therapeutics using bioscaffolds is a potential means of overcoming the BBB and could potentially facilitate long-lasting drug release. A number of natural and synthetic materials have been studied for their biodegradability, toxicity, distribution, and pharmaceutical stability, which are needed to determine the overall effectiveness and safety of glioblastoma treatment. This review summarizes advancements in the research of bioscaffold-based GBM cell growth systems and the potential of using bioscaffolds as a carrier for drug delivery.
Collapse
Affiliation(s)
- Kimmy Tran
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA
| | - Ryan Brice
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA
| | - Li Yao
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA.
| |
Collapse
|
19
|
Wu H, Xu H, Shi Y, Yuan T, Meng T, Zhang Y, Xie W, Li X, Li Y, Fan L. Recent Advance in Carbon Dots: From Properties to Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hao Wu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Huimin Xu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Yuxin Shi
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Ting Yuan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Ting Meng
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Yang Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Wenjing Xie
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Xiaohong Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Yunchao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Louzhen Fan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| |
Collapse
|
20
|
Khan M, Sherwani S, Khan S, Alouffi S, Alam M, Al-Motair K, Khan S. Insights into Multifunctional Nanoparticle-Based Drug Delivery Systems for Glioblastoma Treatment. Molecules 2021; 26:molecules26082262. [PMID: 33919694 PMCID: PMC8069805 DOI: 10.3390/molecules26082262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GB) is an aggressive cancer with high microvascular proliferation, resulting in accelerated invasion and diffused infiltration into the surrounding brain tissues with very low survival rates. Treatment options are often multimodal, such as surgical resection with concurrent radiotherapy and chemotherapy. The development of resistance of tumor cells to radiation in the areas of hypoxia decreases the efficiency of such treatments. Additionally, the difficulty of ensuring drugs effectively cross the natural blood-brain barrier (BBB) substantially reduces treatment efficiency. These conditions concomitantly limit the efficacy of standard chemotherapeutic agents available for GB. Indeed, there is an urgent need of a multifunctional drug vehicle system that has potential to transport anticancer drugs efficiently to the target and can successfully cross the BBB. In this review, we summarize some nanoparticle (NP)-based therapeutics attached to GB cells with antigens and membrane receptors for site-directed drug targeting. Such multicore drug delivery systems are potentially biodegradable, site-directed, nontoxic to normal cells and offer long-lasting therapeutic effects against brain cancer. These models could have better therapeutic potential for GB as well as efficient drug delivery reaching the tumor milieu. The goal of this article is to provide key considerations and a better understanding of the development of nanotherapeutics with good targetability and better tolerability in the fight against GB.
Collapse
Affiliation(s)
- Mohd Khan
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.A.); (K.A.-M.)
- Correspondence: or
| | - Subuhi Sherwani
- Department of Biology, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.S.); (M.A.)
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Ha’il, Ha’il 2440, Saudi Arabia;
| | - Sultan Alouffi
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.A.); (K.A.-M.)
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia
| | - Mohammad Alam
- Department of Biology, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.S.); (M.A.)
| | - Khalid Al-Motair
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.A.); (K.A.-M.)
| | - Shahper Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, U.P., India;
| |
Collapse
|
21
|
Lorimer IAJ. Aberrant Rac pathway signalling in glioblastoma. Small GTPases 2021; 12:81-95. [PMID: 31032735 PMCID: PMC7849730 DOI: 10.1080/21541248.2019.1612694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022] Open
Abstract
Glioblastoma is an aggressive and incurable form of brain cancer. Both mutation analysis in human glioblastoma and mouse modelling studies have shown that aberrant activation of the PI 3-kinase pathway is a central driver of glioblastoma malignancy. The small GTPase Rac is activated downstream of this pathway, mediating a subset of the effects of aberrant PI 3-kinase pathway activation. Here I discuss the current state of our knowledge on Rac activation mechanisms in glioblastoma. Current knowledge on roles for specific PI 3-kinase pathway responsive Rac guanine nucleotide exchange factors in glioblastoma is reviewed. Rac is best known for its role in promoting cell motility and invasion, but there is also evidence for roles in multiple other cellular processes with cancer relevance, including proliferation, differentiation, apoptosis, DNA damage responses, metabolism, angiogenesis and immunosuppression. I review what is known about the role of Rac in these processes in glioblastoma. Finally, I assess possible strategies to inhibit this pathway in glioblastoma through either direct inhibition of Rac or inhibition of upstream activators or downstream mediators of Rac signalling.
Collapse
Affiliation(s)
- Ian AJ Lorimer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Wu H, Su W, Xu H, Zhang Y, Li Y, Li X, Fan L. Applications of carbon dots on tumour theranostics. VIEW 2021. [DOI: 10.1002/viw.20200061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Hao Wu
- College of Chemistry Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education Beijing Normal University Beijing China
| | - Wen Su
- College of Chemistry Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education Beijing Normal University Beijing China
| | - Huimin Xu
- College of Chemistry Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education Beijing Normal University Beijing China
| | - Yang Zhang
- College of Chemistry Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education Beijing Normal University Beijing China
| | - Yunchao Li
- College of Chemistry Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education Beijing Normal University Beijing China
| | - Xiaohong Li
- College of Chemistry Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education Beijing Normal University Beijing China
| | - Louzhen Fan
- College of Chemistry Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education Beijing Normal University Beijing China
| |
Collapse
|
23
|
The Potential of Helianthin Loaded Into Magnetic Nanoparticles to Induce Cytotoxicity in Glioblastoma Cells. CURRENT HEALTH SCIENCES JOURNAL 2021; 47:412-419. [PMID: 35003774 PMCID: PMC8679159 DOI: 10.12865/chsj.47.03.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/28/2021] [Indexed: 11/18/2022]
Abstract
The central nervous system tumors are the most common solid tumors in adults.. Unlike other types of cancers, brain cancer is much difficult to treat because of the blood-brain barrier (BBB) that prevents drug substances from crossing it and accessing the brain. Different types of methods to overcome BBB have been used in vivo and in vitro, of which the use of nanoparticle-mediated delivery of therapeutic drugs is particularly promising. In the present study, we used iron oxide magnetic nanoparticles (NPs) as carrier system for helianthin (He/NPs) to treat cancer cells derived from glioblastoma. An early passage cell cultures (GB1B), established in our laboratory from tissue obtained from a patient diagnosed with glioblastoma, was used. The cells were treated with different concentrations of NPs or HeNPs and then cell proliferation was measured at 24, 48 and 72 hours. Our results showed that the treatment with NPs was well tolerated by glioblastoma cells, the viability of the cells increased very slightly after the treatment. Furthermore, we demonstrated that helianthin loaded Fe3O4 magnetic nanoparticles induced cytotoxicity in human glioblastoma cells. The treatment with HeNPs induced dose and time dependent.
Collapse
|
24
|
Akhter MH, Rizwanullah M, Ahmad J, Amin S, Ahmad MZ, Minhaj MA, Mujtaba MA, Ali J. Molecular Targets and Nanoparticulate Systems Designed for the Improved Therapeutic Intervention in Glioblastoma Multiforme. Drug Res (Stuttg) 2020; 71:122-137. [DOI: 10.1055/a-1296-7870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractGlioblastoma multiforme (GBM) is the most aggressive and fatal CNS related tumors, which is responsible for about 4% of cancer-related deaths. Current GBM therapy includes surgery, radiation, and chemotherapy. The effective chemotherapy of GBM is compromised by two barriers, i. e., the blood-brain barrier (BBB) and the blood tumor barrier (BTB). Therefore, novel therapeutic approaches are needed. Nanoparticles are one of the highly efficient drug delivery systems for a variety of chemotherapeutics that have gained massive attention from the last three decades. Perfectly designed nanoparticles have the ability to cross BBB and BTB and precisely deliver the chemotherapeutics to GBM tissue/cells. Nanoparticles can encapsulate both hydrophilic and lipophilic drugs, genes, proteins, and peptides, increase the stability of drugs by protecting them from degradation, improve plasma half-life, reduce adverse effects and control the release of drugs/genes at the desired site. This review focussed on the different signaling pathways altered in GBM cells to understand the rationale behind selecting new therapeutic targets, challenges in the drug delivery to the GBM, various transport routes in brain delivery, and recent advances in targeted delivery of different drug and gene loaded various lipidic, polymeric and inorganic nanoparticles in the effective management of GBM.
Collapse
Affiliation(s)
- Md. Habban Akhter
- Department of Pharmaceutics, Faculty of Pharmacy, DIT University, Dehradun, India
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia (KSA)
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Kingdom of Saudi Arabia (KSA)
| | - Md. Akram Minhaj
- Department of Pharmacology, Maulana Azad Medical College and Hospital, New Delhi, India
| | - Md. Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha, Kingdom of Saudi Arabia (KSA)
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
25
|
Agarwal S, Mohamed MS, Mizuki T, Maekawa T, Sakthi Kumar D. Chlorotoxin modified morusin-PLGA nanoparticles for targeted glioblastoma therapy. J Mater Chem B 2020; 7:5896-5919. [PMID: 31423502 DOI: 10.1039/c9tb01131e] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Malignant brain tumors remain a major cause of concern and mortality as successful treatment is hindered due to the poor transport and low penetration of chemotherapeutics across the blood-brain barrier (BBB). In this study, a nano formulation composed of chlorotoxin (CTX)-conjugated morusin loaded PLGA nanoparticles (PLGA-MOR-CTX) was devised against Glioblastoma Multiforme (GBM) and its anti-proliferative effects were evaluated in vitro. The synthesized nanoparticles were loaded with morusin, a naturally derived chemotherapeutic drug, and surface conjugated with CTX, a peptide derived from scorpion venom, highly specific for chloride channels (CIC-3) expressed in glioma tumor cells, as well as for matrix metalloproteinase (MMP-2), which is up regulated in the tumor microenvironment. Subsequently, the anti-cancer potential of the NPs was assessed in U87 and GI-1 (human glioblastoma) cells. Antiproliferative, cell apoptosis, and other cell-based assays demonstrated that the PLGA-MOR-CTX NPs resulted in enhanced inhibitory effects on U87 and GI-1 glioma cells. Prominent cytotoxicity parameters such as ROS generation, enhanced caspase activity, cytoskeletal destabilization, and inhibition of MMP-activity were observed in glioblastoma cells upon PLGA-MOR-CTX NP treatment. The cytocompatibility observed with normal human neuronal cells (HCN-1A) and the enhanced lethal effects in glioblastoma cells highlight the potential of PLGA-MOR-CTX nanoparticles as promising therapeutic nanocarriers towards GBM.
Collapse
Affiliation(s)
- Srishti Agarwal
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan.
| | | | | | | | | |
Collapse
|
26
|
Glioma progression is suppressed by Naringenin and APO2L combination therapy via the activation of apoptosis in vitro and in vivo. Invest New Drugs 2020; 38:1743-1754. [PMID: 32767162 DOI: 10.1007/s10637-020-00979-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
Naringenin (NG) is a natural antioxidant flavonoid which is isolated from citrus fruits, and has been reported to inhibit colon cancer proliferation. However, the effects of NG treatment on glioma remain to be elucidated. The present study aimed to explore the effects of NG on glioma in vitro and in vivo. Also, the interactions between NG and APO2 ligand (APO2L; also known as tumor necrosis factor-related apoptosis-inducing ligand) were investigated in glioma. A synergistic effect of NG and APO2L combination on apoptotic induction was observed, though glioma cells were insensitive to APO2L alone. After NG treatment, glioma cells resumed the sensitivity to APO2L and cell apoptosis was induced via the activation of caspases, elevation of decoy receptors 4 and 5 (DR4 and DR5) and induction of p53. Coadministration of NG and APO2L decreased levels of anti-apoptotic B cell lymphoma 2 (Bcl-2) family members Bcl-2 and Bcl-extra large (Bcl-xL), while increased levels of proapoptotic factors Bcl-2-associated agonist of cell death (Bad) and Bcl-2 antagonist/killer 1 (Bak). Furthermore, an in vivo mouse xenograft model demonstrated that NG and APO2L cotreatment markedly suppressed glioma growth by activating apoptosis in tumor tissues when compared with NG or APO2L monotherapy. The present study provides a novel therapeutic strategy for glioma by potentiating APO2L-induced apoptosis via the combination with NG in glioma tumor cells.
Collapse
|
27
|
Memari E, Maghsoudi A, Yazdian F, Yousefi M, Mohammadi M. Synthesis of PHB-co-PEI nanoparticles as gene carriers for miR-128-encoding plasmid delivery to U87 glioblastoma cells. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Wu Y, Lu Z, Li Y, Yang J, Zhang X. Surface Modification of Iron Oxide-Based Magnetic Nanoparticles for Cerebral Theranostics: Application and Prospection. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1441. [PMID: 32722002 PMCID: PMC7466388 DOI: 10.3390/nano10081441] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022]
Abstract
Combining diagnosis with therapy, magnetic iron oxide nanoparticles (INOPs) act as an important vehicle for drug delivery. However, poor biocompatibility of INOPs limits their application. To improve the shortcomings, various surface modifications have been developed, including small molecules coatings, polymers coatings, lipid coatings and lipopolymer coatings. These surface modifications facilitate iron nanoparticles to cross the blood-brain-barrier, which is essential for diagnosis and treatments of brain diseases. Here we focus on the characteristics of different coated INOPs and their application in brain disease, particularly gliomas, Alzheimer's disease (AD) and Parkinson's disease (PD). Moreover, we summarize the current progress and expect to provide help for future researches.
Collapse
Affiliation(s)
- Yanyue Wu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Lu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Yang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Al Dybiat I, Baitukha A, Pimpie C, Kaci R, Pocard M, Arefi Khonsari F, Mirshahi M. Multi-nanolayer drug delivery using radiofrequency plasma technology. BMC Cancer 2020; 20:565. [PMID: 32552705 PMCID: PMC7302375 DOI: 10.1186/s12885-020-06989-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It may be impossible to perform cancer surgery with free margins in the presence of an unresectable structure. Local drug treatment after surgery has been proposed to increase the rate of tumor control. METHODS Multi-nanolayers (10-330 nm) were generated by a low-pressure (375mTorr) inductively coupled plasma (13.56 MHz) reactor for anticancer drug delivery by the deposition of polycaprolactone-polyethylene glycol multistack barrier on the collagen membrane (100 μm thickness). Carboplatin (300 μg/cm2) was used for the in vitro and in vivo investigations. Energy-dispersive X-ray spectroscopy (15 keV), scanning electron microscopy and inductively coupled plasma mass spectrometry were used to detect the presence of carboplatin in the nanolayer, the tumor sample and the culture medium. Preclinical studies were performed on ovarian (OVCAR-3NIH) and colon (CT26) cancer cell lines as xenografts (45 days) and allografts (23 days) in Swiss-nude (n = 6) and immunocompetent BALB/cByJ mice (n = 24), respectively. RESULTS The loading of carboplatin or other drugs between the nanofilm on the collagen membrane did not modify the mesh complex architecture or the drug properties. Drugs were detectable on the membrane for more than 2 weeks in the in vitro analysis and more than 10 days in the in vivo analysis. Cytotoxic mesh decreased cell adherence (down 5.42-fold) and induced cancer cell destruction (up to 7.87-fold). Implantation of the mesh on the mouse tumor nodule modified the cell architecture and decreased the tumor size (50.26%) compared to the control by inducing cell apoptosis. CONCLUSION Plasma technology allows a mesh to be built with multi-nanolayer anticancer drug delivery on collagen membranes.
Collapse
Affiliation(s)
- Iman Al Dybiat
- CAP-Paris Tech, INSERM U1275, Department of Oncologic & Digestive Surgery, Université de Paris, Lariboisière Hospital, 2 rue Ambroise Paré, 75010, Paris, France
| | - Alibi Baitukha
- Laboratoire Interfaces et Systèmes Electrochimiques, Sorbonne Universités, University Paris 06, CNRS, 4 place Jussieu, 75005, Paris, France
| | - Cynthia Pimpie
- CAP-Paris Tech, INSERM U1275, Department of Oncologic & Digestive Surgery, Université de Paris, Lariboisière Hospital, 2 rue Ambroise Paré, 75010, Paris, France
| | - Rachid Kaci
- Central Department of Anatomy and Pathological Cytology, Hospital Lariboisière, 75010, Paris, France
| | - Marc Pocard
- CAP-Paris Tech, INSERM U1275, Department of Oncologic & Digestive Surgery, Université de Paris, Lariboisière Hospital, 2 rue Ambroise Paré, 75010, Paris, France
| | - Farzaneh Arefi Khonsari
- Laboratoire Interfaces et Systèmes Electrochimiques, Sorbonne Universités, University Paris 06, CNRS, 4 place Jussieu, 75005, Paris, France
| | - Massoud Mirshahi
- CAP-Paris Tech, INSERM U1275, Department of Oncologic & Digestive Surgery, Université de Paris, Lariboisière Hospital, 2 rue Ambroise Paré, 75010, Paris, France.
| |
Collapse
|
30
|
Leier A, Bedwell DM, Chen AT, Dickson G, Keeling KM, Kesterson RA, Korf BR, Marquez Lago TT, Müller UF, Popplewell L, Zhou J, Wallis D. Mutation-Directed Therapeutics for Neurofibromatosis Type I. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:739-753. [PMID: 32408052 PMCID: PMC7225739 DOI: 10.1016/j.omtn.2020.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Significant advances in biotechnology have led to the development of a number of different mutation-directed therapies. Some of these techniques have matured to a level that has allowed testing in clinical trials, but few have made it to approval by drug-regulatory bodies for the treatment of specific diseases. While there are still various hurdles to be overcome, recent success stories have proven the potential power of mutation-directed therapies and have fueled the hope of finding therapeutics for other genetic disorders. In this review, we summarize the state-of-the-art of various therapeutic approaches and assess their applicability to the genetic disorder neurofibromatosis type I (NF1). NF1 is caused by the loss of function of neurofibromin, a tumor suppressor and downregulator of the Ras signaling pathway. The condition is characterized by a variety of phenotypes and includes symptoms such as skin spots, nervous system tumors, skeletal dysplasia, and others. Hence, depending on the patient, therapeutics may need to target different tissues and cell types. While we also discuss the delivery of therapeutics, in particular via viral vectors and nanoparticles, our main focus is on therapeutic techniques that reconstitute functional neurofibromin, most notably cDNA replacement, CRISPR-based DNA repair, RNA repair, antisense oligonucleotide therapeutics including exon skipping, and nonsense suppression.
Collapse
Affiliation(s)
- Andre Leier
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David M Bedwell
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ann T Chen
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - George Dickson
- Centre of Biomedical Sciences, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Kim M Keeling
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Ulrich F Müller
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Linda Popplewell
- Centre of Biomedical Sciences, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Deeann Wallis
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
31
|
Li S, Su W, Wu H, Yuan T, Yuan C, Liu J, Deng G, Gao X, Chen Z, Bao Y, Yuan F, Zhou S, Tan H, Li Y, Li X, Fan L, Zhu J, Chen AT, Liu F, Zhou Y, Li M, Zhai X, Zhou J. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nat Biomed Eng 2020; 4:704-716. [PMID: 32231314 PMCID: PMC7197249 DOI: 10.1038/s41551-020-0540-y] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/20/2020] [Indexed: 12/28/2022]
Abstract
Strategies for selectively imaging and delivering drugs to tumours typically leverage differentially upregulated surface molecules on cancer cells. Here, we show that intravenously injected carbon quantum dots, functionalized with multiple paired α-carboxyl and amino groups that bind to the large neutral amino acid transporter 1 (which is expressed in most tumours), selectively accumulate in human tumour xenografts in mice and in an orthotopic mouse model of human glioma. The functionalized quantum dots, which structurally mimic large amino acids and can be loaded with aromatic drugs through π–π stacking interactions, enabled—in the absence of detectable toxicity—near-infrared fluorescence and photoacoustic imaging of the tumours and a reduction in tumour burden after the targeted delivery of chemotherapeutics to the tumours. The versatility of functionalization and high tumour selectivity of the quantum dots make them broadly suitable for tumour-specific imaging and drug delivery. Intravenously injected functionalized carbon quantum dots that bind to the large neutral amino acid transporter 1 and that structurally mimic large amino acids selectively accumulate in human tumours in mice, facilitating targeted theranostics.
Collapse
Affiliation(s)
- Shuhua Li
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Wen Su
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Hao Wu
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Ting Yuan
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Chang Yuan
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Jun Liu
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Gang Deng
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Xingchun Gao
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Zeming Chen
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Youmei Bao
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Fanglong Yuan
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Shixin Zhou
- Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hongwei Tan
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Yunchao Li
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Xiaohong Li
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China
| | - Louzhen Fan
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China.
| | - Jia Zhu
- College of Chemistry, Key Laboratories of Theoretical and Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing, China.
| | - Ann T Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fuyao Liu
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Yu Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Miao Li
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Xingchen Zhai
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, USA. .,Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
32
|
Bao Y, Zhang S, Chen Z, Chen AT, Ma J, Deng G, Xu W, Zhou J, Yu ZQ, Yao G, Chen J. Synergistic Chemotherapy for Breast Cancer and Breast Cancer Brain Metastases via Paclitaxel-Loaded Oleanolic Acid Nanoparticles. Mol Pharm 2020; 17:1343-1351. [DOI: 10.1021/acs.molpharmaceut.0c00044] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Youmei Bao
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Shatai Road, Guangzhou 510515, P. R. China
| | - Shenqi Zhang
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Zeming Chen
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Ann T. Chen
- Department of Biomedical Engineering, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Junning Ma
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Gang Deng
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
- Department of Biomedical Engineering, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Zhi-Qiang Yu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Shatai Road, Guangzhou 510515, P. R. China
| | - Guangyu Yao
- Breast Center, Nanfang Hospital, Southern Medical University, 1838 Shatai Road, Guangzhou 510515, P. R. China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Shatai Road, Guangzhou 510515, P. R. China
| |
Collapse
|
33
|
Królicki L, Kunikowska J, Bruchertseifer F, Koziara H, Królicki B, Jakuciński M, Pawlak D, Rola R, Morgenstern A, Rosiak E, Merlo A. 225Ac- and 213Bi-Substance P Analogues for Glioma Therapy. Semin Nucl Med 2020; 50:141-151. [DOI: 10.1053/j.semnuclmed.2019.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Zhou Y, Zhang S, Chen Z, Bao Y, Chen AT, Sheu WC, Liu F, Jiang Z, Zhou J. Targeted Delivery of Secretory Promelittin via Novel Poly(lactone- co-β-amino ester) Nanoparticles for Treatment of Breast Cancer Brain Metastases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901866. [PMID: 32154067 PMCID: PMC7055583 DOI: 10.1002/advs.201901866] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/18/2019] [Indexed: 05/05/2023]
Abstract
Breast cancer brain metastases (BCBM) is a devastating disease with dismal prognosis. Although chemotherapy is widely used for clinical management of most tumors, it is often ineffective for BCBM. Therefore, alternative approaches for improved treatment of BCBM are in great demand. Here, an innovative gene therapy regimen is reported that is designed for effective treatment of BCBM. First, poly(lactone-co-β-amino ester) nanoparticles that are capable of efficient gene delivery are synthesized and are engineered for targeted delivery to BCBM through surface conjugation of AMD3100, which interacts with CXCR4 enriched in the tumor microenvironment. Next, an artificial gene, proMel, is designed for the expression of secretory promelittin protein, which has limited toxicity on its own but releases cytolytic melittin after activation by MMP-2 accumulated in tumors. It is demonstrated that delivery of the proMel via the AMD3100-conjugated nanoparticles effectively inhibits tumor progression in a BCBM mouse model. This study suggests a new direction to treat BCBM through targeted delivery of promelittin-mediated gene therapy.
Collapse
Affiliation(s)
- Yu Zhou
- Department of NeurosurgeryYale UniversityNew HavenCT06511USA
- Department of NeurosurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Shenqi Zhang
- Department of NeurosurgeryYale UniversityNew HavenCT06511USA
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityHubei430060China
| | - Zeming Chen
- Department of NeurosurgeryYale UniversityNew HavenCT06511USA
| | - Youmei Bao
- Department of NeurosurgeryYale UniversityNew HavenCT06511USA
| | - Ann T. Chen
- Department of Biomedical EngineeringYale UniversityNew HavenCT06511USA
| | - Wendy C. Sheu
- Department of Biomedical EngineeringYale UniversityNew HavenCT06511USA
| | - Fuyao Liu
- Department of NeurosurgeryYale UniversityNew HavenCT06511USA
| | - Zhaozhong Jiang
- Department of Biomedical EngineeringYale UniversityNew HavenCT06511USA
| | - Jiangbing Zhou
- Department of NeurosurgeryYale UniversityNew HavenCT06511USA
- Department of Biomedical EngineeringYale UniversityNew HavenCT06511USA
| |
Collapse
|
35
|
Moquin A, Sturn J, Zhang I, Ji J, von Celsing R, Vali H, Maysinger D, Kakkar A. Unraveling Aqueous Self-Assembly of Telodendrimers to Shed Light on Their Efficacy in Drug Encapsulation. ACS APPLIED BIO MATERIALS 2019; 2:4515-4526. [DOI: 10.1021/acsabm.9b00643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alexandre Moquin
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Jessica Sturn
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Jeff Ji
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Richard von Celsing
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec H3A 0C7, Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
36
|
Ma J, Zhang S, Liu J, Liu F, Du F, Li M, Chen AT, Bao Y, Suh HW, Avery J, Deng G, Zhou Y, Wu P, Sheth K, Wang H, Zhou J. Targeted Drug Delivery to Stroke via Chemotactic Recruitment of Nanoparticles Coated with Membrane of Engineered Neural Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902011. [PMID: 31290245 PMCID: PMC11089900 DOI: 10.1002/smll.201902011] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/17/2019] [Indexed: 05/18/2023]
Abstract
Cell membrane coating has recently emerged as a promising biomimetic approach to engineering nanoparticles (NPs) for targeted drug delivery. However, simple cell membrane coating may not meet the need for efficient drug delivery to the brain. Here, a novel molecular engineering strategy to modify the surface of NPs with a cell membrane coating for enhanced brain penetration is reported. By using poly(lactic-co-glycolic) acid NPs as a model, it is shown that delivery of NPs to the ischemic brain is enhanced through surface coating with the membrane of neural stem cells (NSCs), and the delivery efficiency can be further increased using membrane isolated from NSCs engineered for overexpression of CXCR4. It is found that this enhancement is mediated by the chemotactic interaction of CXCR4 with SDF-1, which is enriched in the ischemic microenvironment. It is demonstrated that the resulting CXCR4-overexpressing membrane-coated NPs, termed CMNPs, significantly augment the efficacy of glyburide, an anti-edema agent, for stroke treatment. The study suggests a new approach to improving drug delivery to the ischemic brain and establishes a novel formulation of glyburide that can be potentially translated into clinical applications to improve management of human patients with stroke.
Collapse
Affiliation(s)
- Junning Ma
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Shenqi Zhang
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Jun Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Fuyao Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Fenyi Du
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Miao Li
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Ann T Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Youmei Bao
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Hee Won Suh
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Jonathan Avery
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Gang Deng
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Yu Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Peng Wu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Kevin Sheth
- Department of Neurology, Yale University, New Haven, CT, 06510, USA
| | - Haijun Wang
- Department of Neurosurgery, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
37
|
Lee YK, Lee KW, Kim M, Lee Y, Yoo J, Hwangbo C, Park KH, Kim KD. Chelidonine Induces Caspase-Dependent and Caspase-Independent Cell Death through G 2/M Arrest in the T98G Human Glioblastoma Cell Line. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:6318179. [PMID: 31239863 PMCID: PMC6556348 DOI: 10.1155/2019/6318179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022]
Abstract
Chelidonium majus L. (family Papaveraceae), commonly known as greater celandine or tetterwort, has been reported to have antibacterial and anticancer effects and chelidonine is known as a functional metabolite extracted from C.
Collapse
Affiliation(s)
- Yeon-Kyeong Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Ki Won Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Minju Kim
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Yerin Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jiyun Yoo
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Cheol Hwangbo
- Division of Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Ki Hun Park
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 660-701, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
- PMBBRC, Gyeongsang National University, Jinju 660-701, Republic of Korea
| |
Collapse
|
38
|
Lajous H, Lelièvre B, Vauléon E, Lecomte P, Garcion E. Rethinking Alkylating(-Like) Agents for Solid Tumor Management. Trends Pharmacol Sci 2019; 40:342-357. [PMID: 30979523 DOI: 10.1016/j.tips.2019.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/15/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Although old molecules, alkylating agents and platinum derivatives are still widely used in the treatment of various solid tumors. However, systemic toxicity and cellular resistance mechanisms impede their efficacy. Innovative strategies, including local administration, optimization of treatment schedule/dosage, synergistic combinations, and the encapsulation of bioactive molecules in smart, multifunctional drug delivery systems, have shown promising results in potentiating anticancer activity while circumventing such hurdles. Furthermore, questioning of the old paradigm according to which nuclear DNA is the critical target of their anticancer activity has shed light on subcellular alternative and neglected targets that obviously participate in the mediation of cytotoxicity or resistance. Thus, rethinking of the use of these pivotal antineoplastic agents appears critical to improve clinical outcomes in the management of solid tumors.
Collapse
Affiliation(s)
- Hélène Lajous
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France; Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, B6a Sart-Tilman, B-4000 Liege, Belgium
| | - Bénédicte Lelièvre
- Centre Régional de Pharmacovigilance, Laboratoire de Pharmacologie-Toxicologie, CHU Angers, 4 rue Larrey, F-49100 Angers, France
| | - Elodie Vauléon
- Centre Eugène Marquis, Rennes, France; INSERM U1242, Université de Rennes 1, Rennes, France
| | - Philippe Lecomte
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, B6a Sart-Tilman, B-4000 Liege, Belgium; Equivalent contribution
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France; Equivalent contribution.
| |
Collapse
|
39
|
Rodriguez de Anda DA, Ohannesian N, Martirosyan KS, Chew SA. Effects of solvent used for fabrication on drug loading and release kinetics of electrosprayed temozolomide-loaded PLGA microparticles for the treatment of glioblastoma. J Biomed Mater Res B Appl Biomater 2019; 107:2317-2324. [PMID: 30767394 DOI: 10.1002/jbm.b.34324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and invasive form of malignant brain tumors and despite advances in surgery, radiotherapy, and chemotherapy, the survival of patients with GBM still remains poor. Temozolomide (TMZ) is the chemotherapy drug that is most commonly given orally after surgical resection of these tumors. In this study, the effects of solvents (i.e., dichloromethane and acetonitrile) used for the fabrication of electrosprayed TMZ-loaded poly(lactic-co-glycolic acid) (PLGA) on drug loading, loading efficiency, drug release kinetics, surface morphology, and particle size were investigated. The results from this study demonstrated that by using a larger volume of a solvent with higher polarity (i.e., acetonitrile) which allows for a higher amount of hydrophilic TMZ to dissolve into the polymer solution, higher drug loading could be achieved. However, the particles fabricated with high amount of acetonitrile, which has a lower vapor pressure, had large pores and a smaller diameter which led to an initial burst release and high cumulative release at the end of the study. An optimal combination of the two solvents is needed to result in particles with a good amount of loading and minimal initial burst release. The electrosprayed microparticles were able to illicit a cytotoxic response in U-87 MG glioblastoma cells at a lower concentration of drug compared to the free drug. This work indicated that electrospraying is a promising method for the fabrication of TMZ-loaded PLGA microparticles for the treatment of GBM and solvent composition can be altered to control drug loading and release kinetics. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2317-2324, 2019.
Collapse
Affiliation(s)
- Daniel A Rodriguez de Anda
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, Texas, 78520
| | - Nareg Ohannesian
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, Texas, 78520
| | - Karen S Martirosyan
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, Texas, 78520
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, Texas, 78520
| |
Collapse
|
40
|
Himes BT, Zhang L, Daniels DJ. Treatment Strategies in Diffuse Midline Gliomas With the H3K27M Mutation: The Role of Convection-Enhanced Delivery in Overcoming Anatomic Challenges. Front Oncol 2019; 9:31. [PMID: 30800634 PMCID: PMC6375835 DOI: 10.3389/fonc.2019.00031] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/11/2019] [Indexed: 12/30/2022] Open
Abstract
Diffuse midline gliomas harboring the H3 K27M mutation—including the previously named diffuse intrinsic pontine glioma (DIPG)—are lethal high-grade pediatric brain tumors that are inoperable and without cure. Despite numerous clinical trials, the prognosis remains poor, with a median survival of ~1 year from diagnosis. Systemic administration of chemotherapeutic agents is often hindered by the blood brain barrier (BBB), and even drugs that successfully cross the barrier may suffer from unpredictable distributions. The challenge in treating this deadly disease relies on effective delivery of a therapeutic agent to the bulk tumor as well as infiltrating cells. Therefore, methods that can enhance drug delivery to the brain are of great interest. Convection-enhanced delivery (CED) is a strategy that bypasses the BBB entirely and enhances drug distribution by applying hydraulic pressure to deliver agents directly and evenly into a target region. This technique reliably distributes infusate homogenously through the interstitial space of the target region and achieves high local drug concentrations in the brain. Moreover, recent studies have also shown that continuous delivery of drug over an extended period of time is safe, feasible, and more efficacious than standard single session CED. Therefore, CED represents a promising technique for treating midline tumors with the H3K27M mutation.
Collapse
Affiliation(s)
- Benjamin T Himes
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - Liang Zhang
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - David J Daniels
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
41
|
Biodegradable wafers releasing Temozolomide and Carmustine for the treatment of brain cancer. J Control Release 2019; 295:93-101. [DOI: 10.1016/j.jconrel.2018.12.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 12/12/2022]
|
42
|
Ganipineni LP, Ucakar B, Joudiou N, Riva R, Jérôme C, Gallez B, Danhier F, Préat V. Paclitaxel-loaded multifunctional nanoparticles for the targeted treatment of glioblastoma. J Drug Target 2019; 27:614-623. [PMID: 30633585 DOI: 10.1080/1061186x.2019.1567738] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION We hypothesised that the active targeting of αvβ3 integrin overexpressed in neoangiogenic blood vessels and glioblastoma (GBM) cells combined with magnetic targeting of paclitaxel- and SPIO-loaded PLGA-based nanoparticles could improve accumulation of nanoparticles in the tumour and therefore improve the treatment of GBM. METHODS PTX/SPIO PLGA nanoparticles with or without RGD-grafting were characterised. Their in vitro cellular uptake and cytotoxicity was evaluated by fluorospectroscopy and MTT assay. In vivo safety and anti-tumour efficacy of different targeting strategies were evaluated in orthotopic U87MG tumour model over multiple intravenous injections. RESULTS The nanoparticles of 250 nm were negatively charged. RGD targeted nanoparticles showed a specific and higher cellular uptake than untargeted nanoparticles by activated U87MG and HUVEC cells. In vitro IC50 of PTX after 48 h was ∼1 ng/mL for all the PTX-loaded nanoparticles. The median survival time of the mice treated with magnetic targeted nanoparticles was higher than the control (saline) mice or mice treated with other evaluated strategies. The 6 doses of PTX did not induce any detectable toxic effects on liver, kidney and heart when compared to Taxol. CONCLUSION The magnetic targeting strategy resulted in a better therapeutic effect than the other targeting strategies (passive, active).
Collapse
Affiliation(s)
- Lakshmi Pallavi Ganipineni
- a Université Catholique de Louvain, Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute , Brussels , Belgium
| | - Bernard Ucakar
- a Université Catholique de Louvain, Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute , Brussels , Belgium
| | - Nicolas Joudiou
- b Université Catholique de Louvain, Nuclear and Electron Spin Technologies Platform (NEST), Louvain Drug Research Institute , Brussels , Belgium
| | - Raphaël Riva
- c University of Liège, Center for Education and Research on Macromolecules (CERM), CESAM Research Unit , Liège , Belgium
| | - Christine Jérôme
- c University of Liège, Center for Education and Research on Macromolecules (CERM), CESAM Research Unit , Liège , Belgium
| | - Bernard Gallez
- b Université Catholique de Louvain, Nuclear and Electron Spin Technologies Platform (NEST), Louvain Drug Research Institute , Brussels , Belgium
| | - Fabienne Danhier
- a Université Catholique de Louvain, Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute , Brussels , Belgium
| | - Véronique Préat
- a Université Catholique de Louvain, Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute , Brussels , Belgium
| |
Collapse
|
43
|
Halle B, Mongelard K, Poulsen FR. Convection-enhanced Drug Delivery for Glioblastoma: A Systematic Review Focused on Methodological Differences in the Use of the Convection-enhanced Delivery Method. Asian J Neurosurg 2019; 14:5-14. [PMID: 30937002 PMCID: PMC6417332 DOI: 10.4103/ajns.ajns_302_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Glioblastoma (GBM) is a leading cause of brain cancer-related death. The blood–brain barrier (BBB) prevents the transport of most systemic delivered molecules to the brain. This constitutes a major problem in the therapy of brain tumors. In the last decade, numerous different drug-delivery approaches have been developed to overcome the BBB. The objective of this study is to provide an overview of the methodological aspects used in all preclinical and clinical studies published from 2011 to 2016 where convection-enhanced delivery (CED) was used for drug delivery in the treatment of GBM. A systematic review of English articles published in the past 5 years was undertaken using PubMed and Embase. The search terms (brain tumor [MeSH Terms]) AND (CED OR convection enhanced delivery) were used in PubMed and a similar search was carried out in Embase using their “multi-field search.” All studies using CED on an intracranial GBM model were included. The search resulted in 151 hits after duplicates were removed. In total, 30 studies were included in the review. Of these, two publications studied the technical aspects of the CED method. Furthermore, only one study was a clinical study. The research field is focused on preclinical drug development trials and less emphasis is placed on the CED technique itself. However, it is important that future studies focus on establishing optimal protocols for the use of CED in rodents as well as for big brain models to be able to use the CED method in patients with GBM.
Collapse
Affiliation(s)
- Bo Halle
- Department of Neurosurgery, Odense University Hospital and BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kristian Mongelard
- Department of Neurosurgery, Odense University Hospital and BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital and BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
44
|
Ganipineni LP, Danhier F, Préat V. Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment. J Control Release 2018; 281:42-57. [PMID: 29753958 DOI: 10.1016/j.jconrel.2018.05.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive and deadliest central nervous system tumors, and the current standard treatment is surgery followed by radiotherapy with concurrent chemotherapy. Nevertheless, the survival period is notably low. Although ample research has been performed to develop an effective therapeutic strategy for treating GBM, the success of extending patients' survival period and quality of life is limited. This review focuses on the strategies developed to address the challenges associated with drug delivery in GBM, particularly nanomedicine. The first part describes major obstacles to the development of effective GBM treatment strategies. The second part focuses on the conventional chemotherapeutic nanomedicine strategies, their limitations and the novel and advanced strategies of nanomedicine, which could be promising for GBM treatment. We also highlighted the prominence of nanomedicine clinical translation. The near future looks bright following the beginning of clinical translation of nanochemotherapy for GBM.
Collapse
Affiliation(s)
- Lakshmi Pallavi Ganipineni
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium
| | - Fabienne Danhier
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium
| | - Véronique Préat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium.
| |
Collapse
|
45
|
Ozdemir-Kaynak E, Qutub AA, Yesil-Celiktas O. Advances in Glioblastoma Multiforme Treatment: New Models for Nanoparticle Therapy. Front Physiol 2018; 9:170. [PMID: 29615917 PMCID: PMC5868458 DOI: 10.3389/fphys.2018.00170] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 02/20/2018] [Indexed: 11/30/2022] Open
Abstract
The most lethal form of brain cancer, glioblastoma multiforme, is characterized by rapid growth and invasion facilitated by cell migration and degradation of the extracellular matrix. Despite technological advances in surgery and radio-chemotherapy, glioblastoma remains largely resistant to treatment. New approaches to study glioblastoma and to design optimized therapies are greatly needed. One such approach harnesses computational modeling to support the design and delivery of glioblastoma treatment. In this paper, we critically summarize current glioblastoma therapy, with a focus on emerging nanomedicine and therapies that capitalize on cell-specific signaling in glioblastoma. We follow this summary by discussing computational modeling approaches focused on optimizing these emerging nanotherapeutics for brain cancer. We conclude by illustrating how mathematical analysis can be used to compare the delivery of a high potential anticancer molecule, delphinidin, in both free and nanoparticle loaded forms across the blood-brain barrier for glioblastoma.
Collapse
Affiliation(s)
- Elif Ozdemir-Kaynak
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova-Izmir, Turkey
| | - Amina A Qutub
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova-Izmir, Turkey.,Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| |
Collapse
|
46
|
Arnone GD, Bhimani AD, Aguilar T, Mehta AI. Localized targeted antiangiogenic drug delivery for glioblastoma. J Neurooncol 2018; 137:223-231. [DOI: 10.1007/s11060-018-2747-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
|
47
|
Mathematical modeling identifies optimum lapatinib dosing schedules for the treatment of glioblastoma patients. PLoS Comput Biol 2018; 14:e1005924. [PMID: 29293494 PMCID: PMC5766249 DOI: 10.1371/journal.pcbi.1005924] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 01/12/2018] [Accepted: 12/12/2017] [Indexed: 12/15/2022] Open
Abstract
Human primary glioblastomas (GBM) often harbor mutations within the epidermal growth factor receptor (EGFR). Treatment of EGFR-mutant GBM cell lines with the EGFR/HER2 tyrosine kinase inhibitor lapatinib can effectively induce cell death in these models. However, EGFR inhibitors have shown little efficacy in the clinic, partly because of inappropriate dosing. Here, we developed a computational approach to model the in vitro cellular dynamics of the EGFR-mutant cell line SF268 in response to different lapatinib concentrations and dosing schedules. We then used this approach to identify an effective treatment strategy within the clinical toxicity limits of lapatinib, and developed a partial differential equation modeling approach to study the in vivo GBM treatment response by taking into account the heterogeneous and diffusive nature of the disease. Despite the inability of lapatinib to induce tumor regressions with a continuous daily schedule, our modeling approach consistently predicts that continuous dosing remains the best clinically feasible strategy for slowing down tumor growth and lowering overall tumor burden, compared to pulsatile schedules currently known to be tolerated, even when considering drug resistance, reduced lapatinib tumor concentrations due to the blood brain barrier, and the phenotypic switch from proliferative to migratory cell phenotypes that occurs in hypoxic microenvironments. Our mathematical modeling and statistical analysis platform provides a rational method for comparing treatment schedules in search for optimal dosing strategies for glioblastoma and other cancer types.
Collapse
|
48
|
Abstract
Direct, local delivery of polymer nanoparticles to the brain is a promising strategy to bypass the blood-brain barrier (BBB) and safely deliver a large therapeutic payload. However, even with the aid of convection-enhanced delivery (CED) techniques, this approach has been limited by the inability to fabricate appropriately sized polymer nanoparticles. Here, we outline a versatile and efficient method for producing polymer nanoparticles that are <100 nm in diameter and can be delivered to the brain via CED.
Collapse
Affiliation(s)
- Xingwang Wu
- Department of Neurosurgery, Yale University, New Haven, CT, USA
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Toral R Patel
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
49
|
Lajous H, Riva R, Lelièvre B, Tétaud C, Avril S, Hindré F, Boury F, Jérôme C, Lecomte P, Garcion E. Hybrid Gd3+/cisplatin cross-linked polymer nanoparticles enhance platinum accumulation and formation of DNA adducts in glioblastoma cell lines. Biomater Sci 2018; 6:2386-2409. [DOI: 10.1039/c8bm00346g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
New hybrid nanoparticles permitted MRI monitoring of a cisplatin infusion while enhancing drug accumulation and DNA adduct formation in glioblastoma cells.
Collapse
Affiliation(s)
- Hélène Lajous
- CRCINA
- INSERM
- Université de Nantes
- Université d'Angers
- Angers
| | - Raphaël Riva
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- University of Liège
- B-4000 Liège
- Belgium
| | - Bénédicte Lelièvre
- Centre régional de pharmacovigilance
- Laboratoire de pharmacologie-toxicologie
- CHU Angers
- F-49100 Angers
- France
| | - Clément Tétaud
- CRCINA
- INSERM
- Université de Nantes
- Université d'Angers
- Angers
| | - Sylvie Avril
- CRCINA
- INSERM
- Université de Nantes
- Université d'Angers
- Angers
| | | | - Frank Boury
- CRCINA
- INSERM
- Université de Nantes
- Université d'Angers
- Angers
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- University of Liège
- B-4000 Liège
- Belgium
| | - Philippe Lecomte
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- University of Liège
- B-4000 Liège
- Belgium
| | | |
Collapse
|
50
|
Hyder F, Manjura Hoque S. Brain Tumor Diagnostics and Therapeutics with Superparamagnetic Ferrite Nanoparticles. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:6387217. [PMID: 29375280 PMCID: PMC5742516 DOI: 10.1155/2017/6387217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/24/2017] [Indexed: 11/18/2022]
Abstract
Ferrite nanoparticles (F-NPs) can transform both cancer diagnostics and therapeutics. Superparamagnetic F-NPs exhibit high magnetic moment and susceptibility such that in presence of a static magnetic field transverse relaxation rate of water protons for MRI contrast is augmented to locate F-NPs (i.e., diagnostics) and exposed to an alternating magnetic field local temperature is increased to induce tissue necrosis (i.e., thermotherapy). F-NPs are modified by chemical synthesis of mixed spinel ferrites as well as their size, shape, and coating. Purposely designed drug-containing nanoparticles (D-NPs) can slowly deliver drugs (i.e., chemotherapy). Convection-enhanced delivery (CED) of D-NPs with MRI guidance improves glioblastoma multiforme (GBM) treatment. MRI monitors the location of chemotherapy when D-NPs and F-NPs are coadministered with CED. However superparamagnetic field gradients produced by F-NPs complicate MRI readouts (spatial distortions) and MRS (extensive line broadening). Since extracellular pH (pHe) is a cancer hallmark, pHe imaging is needed to screen cancer treatments. Biosensor imaging of redundant deviation in shifts (BIRDS) extrapolates pHe from paramagnetically shifted signals and the pHe accuracy remains unaffected by F-NPs. Hence effect of both chemotherapy and thermotherapy can be monitored (by BIRDS), whereas location of F-NPs is revealed (by MRI). Smarter tethering of nanoparticles and agents will impact GBM theranostics.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - S. Manjura Hoque
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Materials Science Division, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| |
Collapse
|